Reliability estimation and parameter estimation for inverse Weibull distribution under different loss functions

Authors

  • Asuman Yılmaz Van Yüzüncü Yıl University
  • Mahmut Kara Van Yüzüncü Yıl University

DOI:

https://doi.org/10.48129/kjs.v49i1.9967

Keywords:

Lindley’s approximation, Loss function, MCMC method, Parameter estimation, Reliability estimation.

Abstract

In this paper, the classical and Bayesian estimators of the unknown parameters and reliability
function of the inverse Weibull distribution are considered. The maximum likelihood estimators
(MLEs) and modified maximum likelihood estimators (MMLEs) are used in the classical
parameter estimation. Bayesian estimators of the parameters are obtained by using symmetric and asymmetric loss functions under non-prior and prior distributions. Bayesian computation are derived by using Lindley approximation and Markov chain Monte Carlo (MCMC) methods. The asymptotic confidence intervals are constructed based on the maximum likelihood estimators. The Bayes credible intervals of the parameters are obtained by using MCMC method. Furthermore, the performances of these estimation methods are compared with respect to their biases and mean square errors through a simulation study. It is seen that the Bayes estimators perform better than the classical estimators. Finally, two real life examples are given for illustrative purposes. 

References

Johnson N.L., Kotz, S. & Balakrishnan, N. (1994) Continuous Univariate Distributions-1, 2nd ed. John Wiley & Sons.

Drapella, A. (1993) The complementary Weibull distribution: unknown or just forgotten Quality and Reliability Engineering International 9(4): 383-385.

Mudholkar, G.S. & Kollia, G.D. (1994) Generalized Weibull family: a structural analysis. Communications in statistics-theory and methods 23(4): 1149-1171.

Murthy, D.N., Bulmer, M. & Eccleston, J.A. (2004) Weibull model selection for reliability modelling. Reliability Engineering & System Safety 86(3): 257-267.

Maswadah, M. (2003) Conditional confidence interval estimation for the inverse Weibull distribution based on censored generalized order statistics. Journal of Statistical Computation and Simulation 73(12): 887-898.

Calabria, R. & Pulcini, G. (1994) Bayes 2-sample prediction for the inverse Weibull distribution. Communications Statistics Theory and Methods 23(6): 1811–1824.

Helu, A. & Samawi, H. (2015) The Inverse Weibull Distribution as a Failure Model Under Various Loss Functions and Based on Progressive First-Failure Censored Data. Quality Technology & Quantitative Management 12(4): 517-535.

Kundu, D. & Howlader, H. (2010) Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data. Computational Statistics & Data Analysis 54(6): 1547-1558.

Erto, P. (1986) Properties and identification of the inverse Weibull: unknown or just forgotten. Quality and Reliability Engineering International 9: 383-385.

Bi, Q. & Wenhao, G. (2017) Bayesian and classical estimation of stress-strength reliability for inverse Weibull lifetime models. Algorithms 10(2): 71.

Ramos, P.L., Louzada, F., Ramos, E. & Dey S (2018) The Fréchet distribution: estimation and application an overview. arXiv preprint arXiv:1801.05327.

Guure, C.B. et al. (2014) Bayesian parameter and reliability estimate of Weibull failure time distribution. The Bulletin of the Malaysian Mathematical Sciences Society Series. 2.14: 611-632.

Singh, S.K., Singh, U. & Yadav, A.S. (2015) Reliability estimation and prediction for extension of exponential distribution using informative and non-informative priors. International Journal of System Assurance Engineering and Management, 6.4: 466-478.

Rastogi, M.K. & Merovci, F. (2018) Bayesian estimation for parameters and reliability characteristic of the Weibull Rayleigh distribution. Journal of King Saud University-Science 30.4: 472-478.

Farahani, Z.S.M. & Khorram, E. (2014) Bayesian statistical inference for weighted exponential distribution. Communications in Statistics-Simulation and Computation 43.6: 1362-1384.

Rinne, H. (2009) The Weibull distribution: A Handbook. Genesis 3(1.1): 1-2.

De Gusmao, F.R., Ortega, E.M. & Cordeiro, G.M. (2011) The generalized inverse Weibull distribution. Statistical Papers52(3): 591-619.

Pasari, S. & Dikshit, O. (2014) Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics 171(7): 1251-1281.

Renjini, K.R., Abdul-Sathar, E.I. & Rajesh, G. (2016) A study of the effect of loss functions on the Bayes estimates of dynamic cumulative residual entropy for Pareto distribution under upper record values. Journal of Statistical Computation and Simulation 86(2): 324-339.

Renjini, K.R., Abdul Sathar, E., Rajesh, G. (2016) Bayes estimation of dynamic cumulative residual entropy for Pareto distribution under type-II right censored data. Applied Mathematical Modelling 40(19-20): 8424-8434.

Ali, S., Aslam, M. & Kazmi, S.M.A. (2013) A study of the effect of the loss function on Bayes Estimate, posterior risk and hazard function for Lindley distribution. Applied Mathematical Modelling 37(8): 6068-6078.

Varian, H.R. (1975) A Bayesian approach to real estate assessment. Studies in Bayesian Econometric and Statistics in honor of Leonard J. Savage 195-208.

Zellner, A. (1986) Bayesian estimation and prediction using asymmetric loss functions. Journal of the American Statistical Association 81(394): 446-451

Dey, D.K., Ghosh, M. & Srinivasan, C. (1986) Simultaneous estimation of parameters under entropy loss. Journal of Statistical Planning and Inference 15: 347-363.

Norstrom, J.G. (1996) The use of precautionary loss functions in risk analysis. IEEE Transactions on reliability 45(3): 400-403.

Rasheed, H.A. & Khalifa, Z.N. (2016) Bayesian Approach of one Parameter Maxwell Distribution under Two Different Loss Functions. Australian Journal of Basic and Applied Sciences 10(18): 223-232.

Ali, S. (2013) On the mean residual life function and stress and strength analysis under different loss function for lindley distribution. Journal of Quality and Reliability Engineering 2013.

Lindley, D.V. (1980) Approximate bayesian methods. Trabajos de estadística y de investigaciónoperativa 31(1): 223-245.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics 21(6): 1087-1092.

Dey, S., Zhang, C., Asgharzadeh, A. & Ghorbannezhad, M. (2017) Comparisons of methods of estimation for the NH distribution. Annals of Data Science 4(4): 441-455.

Smith, A.F. & Roberts, G.O. (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Methodological). 55.1: 3-23.

Kumar, K. (2018) Classical and Bayesian estimation in log-logistic distribution under random censoring. International Journal of System Assurance Engineering and Management. 9.2: 440-451.

Hastings, W.K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.

Kundu, D. & Gupta, R.D. (2006) Estimation of P [Y< X] for Weibull distributions. IEEE Trans. Reliability 55(2): 70-280.

Surles, J.G. & Padgett, W.J. (2001) Inference for reliability and stress-strength for a scaled Burr type X distribution. Lifetime Data Analysis 7(2): 187-200.

Published

02-12-2021