Screening of some microfungi as extracellular lipase source and optimization of process parameters using Penicillium aurantiogriseum by solid substrate fermentation

Authors

DOI:

https://doi.org/10.48129/kjs.v48i1.9766

Abstract

In the present study, eighty-four strains of microfungi were screened for lipolytic activity. Penicillium aurantiogriseum showing high enzymatic activity among screening strains were used in fungal lipase production using solid state fermentation (SSF) method in which various agricultural wastes are used as substrates.  It has been determined that the best solid substrate is sunflower pulp in SSF media where sunflower pulp, wheat bran and corn pulp is used as substrate. In addition, SSF culture media conditions for fungal lipase production were optimized. Optimum fermentation conditions were found as; 6 days of incubation time, 25oC incubation temperature, moisturizing liquid pH: 5.5 (distilled water), initial moisture level 75% (w/v), initial inoculum concentration 1 mL (1x106 spores/mL) and 1% sesame oil as carbon source. As a result of the optimum conditions, the volume activity was recorded as 0.4 U/ml and the specific enzyme activity was obtained as 1.13U/mg.

References

Abdullah, R., Shaheen, N. & Iqtedar, M. (2014). Optimization of cultural conditions lterna production of alpha amylase by Aspergillus niger (Btm-26) in solid state fermentation. Pakistan Journal of Botany, 46(3): 1071-1078.

Alhelli, A.M., Abd Manap, M.Y., Mohammed, A.S., Mirhosseini, S.H., Sukor, R., et al. (2018). The extraction of crude enzyme of lipase from Penicillium candidum PCA 1/ TT031 by way of solid state fermentation. International Food Research Journal, 25:1-11.

Amin, M. & Bhatti, H.N. (2014). Effect of physicochemical parameters on lipase production by Penicillium fellutanum using canola seed oil cake as substrate. International Journal of Agriculture and Biology, 16(1): 118-124.

Cardenas, F., Alvarez, E., Soledad, M., Alvarez, C., Maria, J., et al. (2001). Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. Journal of Molecular Catalysis B: Enzymatic, 14(4-6): 111-123.

Cihangir, N. & Sarıkaya, E. (2004). Investigation of lipase production by a new isolate of Aspergillus sp. World Journal of Microbiology and Biotechnology, 20(2): 193-197.

de Almeida, A.F., Taulk-Tornisielo, S.M. & Carmona, E.C. (2013). Influence of carbon and nitrogen sources on lipase production by a newly isolated Candida viswanathii strain. Annals of Microbiology, 63(4): 1225-1234.

Ferreira, A.N., Ribeiro, D.D.S., Santana, R.A., Santos Felix, A.C., Alvarez, L.D.G., et al. (2017). Production of lipase from Penicillium sp. using waste oils and Nopalea cochenillifera. Chemical Engineering Communications, 204(10): 1167-1173.

Geoffry, K. & Achur, R.N. (2018). Screening and production of lipase from fungal organisms. Biocatalysis and Agricultural Biotechnology, 14: 241-253.

Gutarra, M.L.E., Cavalcanti, E.C., Castilho, L.R., Freire, D.M.G. & Júnior, G.L.S. (2005). Lipase production by solid-state fermentation cultivation conditions and operation of tray and packed-bed bioreactors. Applied Biochemistry and Biotechnology, 121(1-3): 105-116.

Hung, T.C., Giridhar, R., Chiou, S.H. & Wu, W.T. (2003). Binary immobilization of Candida rugosa lipase on chitosan. Journal of Molecular Catalysis B: Enzymatic, 26(1-2): 69-78.

Iftikhar, T., Niaz, M., Anwer, M., Abbas, S.Q., Saleem, M., et al. (2011). Ecological screening of lipolytic cultures and process optimization for extracellular lipase production from fungal hyperproducer. Pakistan Journal of Botany, 43(2): 1343-1349.

Iftikhar, T., Niaz, M. & Zia, M.A. (2010). Production of extracellular lipases by Rhizopus oligosporus in a stirred fermentor. Brazilian Journal of Microbiology, 41(1): 1124-1132.

Jain, R. & Naik, S.N. (2018). Adding value to the oil cake as a waste from oil processing industry: Production of lipase in solid state fermentation. Biocatalysis and Agricultural Biotechnology, 15(1): 181-184.

Kaya, S., Önen, Y., Uyar, F. & Akcan, N. (2013). Katı faz fermentasyonu (KFF) tekniği ile Bacillus subtilis ATCC 6051’den α-amilaz üretimi. Mus Alparslan University Journal of Science, 1(2): 119-126.

Keklikçioğlu Çakmak, N. & Açıkel, Ü. (2015). Candida utilis mayasıyla lipaz enzimi aktivitesinin farklı ortam koşullarında incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(3): 475-485.

Kempka, A.P., Lipke, N.L., da Luz Fontoura Pinheiro, T, Menoncin S, Treichel H, et al. (2008). Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess and Biosystems Engineering, 31(2): 119-125.

Lima, V.M.G., Kieger, N., Mitchell, D.A. & Fontana, J.D. (2004). Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochemical Engineering Journal, 18(1): 65-71.

Lima, V.M.G., Krieger, N., Sarquis, M.I., Mitchell, D.A., Ramos, L.P., et al. (2003). Effect of nitrogen and carbon sources on lipase production by Penicillium aurantiogriseum. Food Technology and Biotechnology, 41(2): 105-110.

Lowry, H.O., Rosebrough, N., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1): 265-275.

Malilas, W., Kang, S.W., Kim, S.B., Yoo, H.Y., Chulalaksananukul, W., et al. (2013). Lipase from Penicillium camembertii KCCM 11268: Optimization of solid state fermentation and application to biodiesel production. Korean Journal of Chemical Engineering, 30(5): 405-412.

Manoorkar, V.B. & Gachande, B.D. (2015). Influence of physical factors on extracellular lipase production in storage seed borne fungi of some oil seeds. International Journal of Recent Scientific Research, 6(2): 2813-2816.

Martínez-Ruiz, A., Tovar-Castro, L., García, H.S., Saucedo-Castañeda, G. & Favela-Torres, E. Continuous ethyl oleate synthesis by lipases produced by solid-state fermentation by Rhizopus microsporus. Bioresource Technology, 265: 52-58.

Pandey, A., Benjamin, S., Soccol, C.R., Nigam, P., Krieger, N., et al. (1999). The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry, 29(2): 119-131.

Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13(2-3): 81-84.

Petroviç, S.E., Krinjar, M., Bedarevid, A., Vujicic, I.F. & Banka, L. (1990). Effect of various carbon sources on microbial lipases biosynthesis. Biotechnology Letters, 12(4): 299-304.

Rajan, A., Nair, A.J. (2011). A comparative study on alkaline lipase production by a newly isolated Aspergillus fumigatus MTCC 9657 in submerged and solid-state fermentation using economically and industrially feasible substrate. Turkish Journal of Biology, 35(5): 569-574.

Rehman, S., Bhatti, H.N., Bhatti, I.A. & Asgher, M. (2011). Optimization of process parameters for enhanced roduction of lipase by Penicillium notatum using agricultural waste, African Journal of Biotechnology, 10(84): 19580-19589.

Riaz, N., Haq, I.U. & Qadder, M.A. (2003). Characterization of α-amylase by Bacillus subtilis. Journal of Agriculture and Biology, 3: 249-252.

Rodrigues, C., Cassini, S.T.A., Antunes, P.W.P., Pinotti, L.M., Keller, R.P., et al. (2016). Lipase-producing fungi for potential wastewater treatment and bioenergy production. African Journal of Biotechnology, 15(18): 759-767.

Roopesh, K., Ramachandran, S., Nampoothiri, K.M., Szakacs, G., Pandey, A. (2006). Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresource Technology, 97(3): 506-511.

Sadh, P.K., Chawla, P., Bhandari, L., Duhan, J.S. (2018). Bio-enrichment of functional properties of peanut oil cakes by solid state fermentation using Aspergillus oryzae. Journal of Food Measurement and Characterization, 12(1): 622-633.

Sargın, S. & Göksungur, Y. (2007). Çeşitli tarımsal atık ve yan ürünlerin katı kültür fermantasyonu ile laktik asit üretiminde kullanılabilirliklerinin incelenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 44(3): 89-99.

Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., et al. (2018). Recent advances on sources and industrial applications of lipases. Biotechnology Progress, 34(1): 5-28.

Shabbir, A. & Mukhtar, H. (2018). Optimization process for enhanced extracellular lipases production from a new isolate of Aspergillus terreusah-F2. Pakistan Journal of Botany, 50(4): 1571-1578.

Singh, A.K. & Mukhopadhyay, M. (2012). Overview of fungal lipase: A review. Applied Biochemistry and Biotechnology, 166(2): 486-520.

Sztajer, H. & Maliszewska, I. (1989). The effect of culture conditions on lipolytic productivity of Penicillium citrinum. Biotechnology Letters, 2(12): 895-898.

Takac, S. & Erdem, B. (2009). Media formulation using complex organic nutrients for improved activity, productivity, and yield of Candida rugosa lipase and esterase enzymes. Preparative Biochemistry and Biotechnology, 39(3): 323-341.

Takaç, S. & Şengel, B.Ş. (2009). Extracellular lipolytic enzyme activity of a newly isolated Debaryomyces hansenii. Preparative Biochemistry & Biotechnology, 40(1): 28-37.

Tan, T., Zhang, M., Wang, B., Ying, C. & Deng, L. (2003). Screening of high lipase producing Candida sp. and production of lipase by fermentation. Process Biochemistry, 39(4): 459-465.

Topal, Ş., Pembeci, C., Borcaklı, M., Batum, M. & Çeltik, Ö. (2000). Türkiye’nin tarımsal mikoflorasının endüstriyel öneme sahip bazı enzimatik aktivitelerinin incelenmesi-I: amilaz, proteaz, lipaz. Turkish Journal of Biology, 24: 79-93.

Published

2020-12-23