Synthesis of coral-like silver chloride-polypyrrole nanocomposites derived from silver nanoparticles and the study of their structural, thermal, optical and electrical properties

Authors

  • Farah Kanwal University of the Punjab
  • Aisha Batool University of the Punjab
  • Muniba Aslam University of the Punjab
  • Fatima Aziz University of the Punjab
  • Shahzad Ahmad School of Economics and Management, Beijing Forestry University, Beijing-100083, China

DOI:

https://doi.org/10.48129/kjs.v48i4.9757

Keywords:

AgCl, PPy nanocomposites, morphology, crystallinity, band gap

Abstract

In this research, we develop a facile method for the synthesis of AgCl:PPy nanocomposites with enhanced structural, thermal, optical and conducting properties.Polypyrrole monomer was in-situ doped with varied weight percentages of as-synthesized Ag nanoparticles by following simple chemical oxidation polymerization technique to form AgCl:PPy nanocomposites. The AgCl nanostructures with tree-like coral morphology distributed uniformily into the PPy matrix without any segregation. The fourier transform infrared spectroscopy results reveal the successful incorporation of AgCl in the organic structure of PPy. X-ray diffraction analysis shows that the formation of AgCl nanostructures in PPy matrix during chemical polymerization process that increases the crystallinity of amorphous PPy. The TGA analysis demonstrates the improved thermal stability of PPy nanocomposites due to developed physiochemical interactions between the AgCl and PPy moities, also inferred from fourier transform infrared results. It is noted that electrical conductivity of AgCl:PPy nanocomposites is significantly controlled by the weight percentage of dispersed Ag nanoparticles in the polymerization assembly. Highest conductivity (1335 S cm-1) of PPy nanocomposite is attributed to the decrease in particle size, shortening of the PPy chain lenght and lower band gap energy presented at critical weight percentage of Ag nanoparticles.

Author Biographies

Farah Kanwal, University of the Punjab

Institute of Chemistry

Professor and Director

Aisha Batool, University of the Punjab

School of Physical Sciences

Assistant Professor

Muniba Aslam, University of the Punjab

Institute of Chemistry

Student

Fatima Aziz, University of the Punjab

Institute of Chemistry

Student

References

Ahmed, K., Kanwal, F., Ramay, S. M., Atiq, S., Rehman, R., Ali, S. M., & Alzayed, N. S. (2018). Synthesis and characterization of BaTiO3/polypyrrole composites with exceptional dielectric behaviour. Polymers, 10(11), 1273.

Blinova, N. V., Stejskal, J., Trchová, M., Prokeš, J., & Omastová, M. (2007). Polyaniline and polypyrrole: A comparative study of the preparation. European polymer journal, 43(6), 2331-2341.

Bolto, B. A., McNeill, R., & Weiss, D. E. (1963). Electronic conduction in polymers. III. Electronic properties of polypyrrole. Australian Journal of Chemistry, 16(6), 1090-1103.

Boukoussa, B., Abidallah, F., Abid, Z., Talha, Z., Taybi, N., El Hadj, H. S., ... & Bengueddach, A. (2017). Synthesis of polypyrrole/Fe-kanemite nanocomposite through in situ polymerization: effect of iron exchange, acid treatment, and CO 2 adsorption properties. Journal of materials science, 52(5), 2460-2472.

Brédas, J. L., Thémans, B., Fripiat, J. G., André, J. M., & Chance, R. R. (1984). Highly conducting polyparaphenylene, polypyrrole, and polythiophene chains: An ab initio study of the geometry and electronic-structure modifications upon doping. Physical Review B, 29(12), 6761.

Cheah, K., Forsyth, M., & Truong, V. T. (1999). An XRD/XPS approach to structural change in conducting PPy. Synthetic metals, 101(1-3), 19.

Chen, W., Li, X., Xue, G., Wang, Z., & Zou, W. (2003). Magnetic and conducting particles: preparation of polypyrrole layer on Fe3O4 nanospheres. Applied surface science, 218(1-4), 216-222.

Chougule, M. A., Pawar, S. G., Godse, P. R., Mulik, R. N., Sen, S., & Patil, V. B. Soft Nanoscience Letters 1, 6–10 (2011).

Du, C., Wang, A., Fei, J., Zhao, J., & Li, J. (2015). Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy. Journal of Materials Chemistry B, 3(22), 4539-4545.

Ghadim, M. F., Imani, A., & Farzi, G. (2014). Synthesis of PPy–silver nanocomposites via in situ oxidative polymerization. Journal of Nanostructure in Chemistry, 4(2), 101.

Gu, S., Li, B., Zhao, C., Xu, Y., Qian, X., & Chen, G. (2011). Preparation and characterization of visible light-driven AgCl/PPy photocatalyst. Journal of Alloys and Compounds, 509(18), 5677-5682.

Guo, Z., Shin, K., Karki, A. B., Young, D. P., Kaner, R. B., & Hahn, H. T. (2009). Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. Journal of Nanoparticle Research, 11(6), 1441-1452.

Hayashi, S., Togawa, Y., Yamamoto, S. I., Koizumi, T., Nishi, K., & Asano, A. (2017). Synthesis of π‐conjugated network polymers based on fluoroarene and fluorescent units via direct arylation polycondensation and their porosity and fluorescent properties. Journal of Polymer Science Part A: Polymer Chemistry, 55(23), 3862-3867.

Jamail, M. A. M. Piah, N. A. Muhamad, R. A. Zainir, N. F. Kasri, Q. Kamarudin, International Journal on Electrical Engineering and Informatics (2013), 5, 217-225.

Kanazawa, K. K., Diaz, A. F., Geiss, R. H., Gill, W. D., Kwak, J. F., Logan, J. A., ... & Street, G. B. (1979). ‘Organic metals’: polypyrrole, a stable synthetic ‘metallic’polymer. Journal of the Chemical Society, Chemical Communications, (19), 854-855.

Kanwal, F., Siddiqi, S. A., Batool, A., Imran, M., Mushtaq, W., & Jamil, T. (2011). Synthesis of polypyrrole–ferric oxide (Ppy–Fe2o3) composites and study of their structural and conducting properties. Synthetic Metals, 161(3-4), 335-339.

Kim, W. H., & AJ, M. (2002). kinen, N. Nikolov, R. Shashidhar, H. Kim, ZH Kafafi. Appl. Phys. Lett, 80, 3844.

Levi, M. D., Gofer, Y., & Aurbach, D. (2002). A synopsis of recent attempts toward construction of rechargeable batteries utilizing conducting polymer cathodes and anodes. Polymers for advanced technologies, 13(10‐12), 697-713.

Liu, J., Wang, J., Yu, X., Li, L., & Shang, S. (2015). One-pot synthesis of polypyrrole/AgCl composite nanotubes and their antibacterial properties. Micro & Nano Letters, 10(1), 50-53.

Mishra, A. K. (2014). Nanocomposites in wastewater treatment. Jenny Stanford Publishing. pp. 221-247.

Mishra, S., Singh, B. R., Singh, A., Keswani, C., Naqvi, A. H., & Singh, H. B. (2014). Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One, 9(5).

Novák, P. (1992). Limitations of polypyrrole synthesis in water and their causes. Electrochimica acta, 37(7), 1227-1230.

Partch, R., Gangolli, S. G., Matijević, E., Cal, W., & Arajs, S. (1991). Conducting polymer composites: I. Surface-induced polymerization of pyrrole on iron (III) and cerium (IV) oxide particles. Journal of colloid and interface science, 144(1), 27-35.

Ramesan, M. T., & Santhi, V. (2018). Synthesis, characterization, conductivity and sensor application study of polypyrrole/silver doped nickel oxide nanocomposites. Composite Interfaces, 25(8), 725-741.

Ravichandran, S. Sundarrajan, J. Venugopal, S. Mukherjee, S. Ramakrishna, Journal of the Royal Society, Interface / the Royal Society (2010), 7 Suppl 5, S559-579.

Ruggeri, G., Bianchi, M., Puncioni, G., & Ciardelli, F. (1997). Molecular control of electric conductivity and structural properties of polymers of pyrrole derivatives. Pure and applied chemistry, 69(1), 143-150.

Šetka, M., Drbohlavová, J., & Hubálek, J. (2017). Nanostructured polypyrrole-based ammonia and volatile organic compound sensors. Sensors, 17(3), 562.

Shanthala, V. S., Devi, S. S., & Murugendrappa, M. V. (2016). Optical band gap Studies of Polypyrrole doped with CuZnFe2O4 nano particles. International Journal of Scientific and Research Publications, 6(9), 21-26.

Shanthala, V. S., Shobha Devi, S. N., & Murugendrappa, M. V. (2017). Synthesis, characterization and DC conductivity studies of polypyrrole/copper zinc iron oxide nanocomposites. Journal of Asian Ceramic Societies, 5(3), 227-234.

Stenger-Smith, J. D. (1998). Intrinsically electrically conducting polymers. Synthesis, characterization, and their applications. Progress in Polymer Science, 23(1), 57-79.

Subramanian, J. Chandrasekaran, D. M. D, R. Magesh, in Journal of Polymer Engineering, Vol. 37, (2015), p. 5

Vernitskaya, T. V., & Efimov, O. N. (1997). Polypyrrole: A conducting polymer (synthesis, properties, and applications). Успехи химии, 66(5), 502-505.

Wang, W., Li, W., Zhang, R., & Wang, J. (2010). Synthesis and characterization of Ag@ PPy yolk–shell nanocomposite. Synthetic metals, 160(21-22), 2255-2259.

Yang, X., Li, L., & Zhao, Y. (2010). Ag/AgCl-decorated polypyrrole nanotubes and their sensory properties. Synthetic metals, 160(17-18), 1822-1825.

Yi, N., & Abidian, M. R. (2016). Conducting polymers and their biomedical applications. In Biosynthetic Polymers for Medical Applications (pp. 243-276). Woodhead Publishing.

Yusoff, N. (2019). Graphene–Polymer Modified Electrochemical Sensors. In Graphene-Based Electrochemical Sensors for Biomolecules (pp. 155-186). Elsevier.

Published

16-08-2021