A completely monotonic function involving the gamma and trigamma functions
Keywords:
Completely monotonic function, gamma function, inequality, logarithmically completely monotonic function, trigamma function.Abstract
In the paper the author provides necessary and sufficient conditions on $a$ for the function\begin{equation*}\frac{1}{2}\ln(2\pi)-x+\biggl(x-\frac{1}{2}\biggr)\ln x-\ln\Gamma(x)+\frac1{12}{\psi'(x+a)}\end{equation*}and its negative to be completely monotonic on $(0,\infty)$, where $a\ge0$ is a real number, $\Gamma(x)$ is the classical gamma function, and $\psi(x)=\frac{\Gamma'(x)}{\Gamma(x)}$ is the digamma function. As applications, some known results and new inequalities are derived.References
Abramowitz, M. & Stegun, I.A. (Eds) (1972). Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. National Bureau of Standards, Applied Mathematics Series 55,
th printing, with corrections, Washington.
Alzer, H. (1993). Some gamma function inequalities. Mathematics of
Computation, 60:337–346, doi:10.2307/2153171.
Atanassov, R.D. & Tsoukrovski, U.V. (1988). Some properties of
a class of logarithmically completely monotonic functions. Comptes
rendus de l’Académie bulgare des Sciences, 41:21–23.
Berg, C. (2004). Integral representation of some functions related to
the gamma function. Mediterranean Journal of Mathematics, 1:433–
, doi:10.1007/s00009-004-0022-6.
Dubourdieu, J. (1939). Sur un théorème de M. S. Bernstein relatifà
la transformation de Laplace-Stieltjes. Compositio Mathematica, 7:96–
(French)
Guo, B.N., Chen, R.J. & Qi, F. (2006). A class of completely monotonic
functions involving the polygamma functions. Journal of Mathematical
Analysis and Approximation Theory, 1:124–134.
Guo, B.N. & Qi, F. (2010a). A property of logarithmically absolutely
monotonic functions and the logarithmically complete monotonicity
of a power-exponential function. University Politehnica of Bucharest
Scientific Bulletin Series A—Applied Mathematics and Physics,
:21–30.
Guo, B.N. & Qi, F. (2010b). Some properties of the psi and polygamma
functions. Hacettepe Journal of Mathematics and Statistics, 39:219–
Guo, B.N. & Qi, F. (2010c). Two new proofs of the complete
monotonicity of a function involving the psi function. Bulletin
of the Korean Mathematical Society, 47:103–111, doi:10.4134/
bkms.2010.47.1.103.
Guo, B.N. & Qi, F. (2011a). A class of completely monotonic functions
involving divided differences of the psi and tri-gamma functions
and some applications. Journal of the Korean Mathematical Society,
:655–667, doi:10.4134/JKMS.2011.48.3.655.
Guo, B.N. & Qi, F. (2011b). An alternative proof of Elezović-Giordano-
Pečarić’s theorem. Mathematical Inequalities & Applications, 14:73–
, doi:10.7153/mia-14-06.
Guo, B.N. & Qi, F. (2012a). A completely monotonic function involving
the tri-gamma function and with degree one. Applied Mathematics and
Computation, 218:9890–9897, doi:10.1016/j.amc.2012.03.075.
Guo, B.N. & Qi, F. (2012b). Monotonicity of functions connected with
the gamma function and the volume of the unit ball. Integral Transforms
and Special Functions, 23:701–708, doi:10.1080/10652469.2011.6275
Guo, B.N. & Qi, F. (2013a). Monotonicity and logarithmic convexity
relating to the volume of the unit ball. Optimization Letters, 7:1139–
, doi:10.1007/s11590-012-0488-2.
Guo, B.N. & Qi, F. (2013b). Refinements of lower bounds for
polygamma functions. Proceedings of the American Mathematical
Society, 141:1007–1015, doi:10.1090/S0002-9939-2012-11387-5.
Guo, B.N., Qi, F. & Srivastava, H.M. (2010). Some uniqueness results
for the non-trivially complete monotonicity of a class of functions
involving the polygamma and related functions. Integral Transforms and
Special Functions, 21:849–858, doi:10.1080/10652461003748112.
Guo, B.N., Zhang, Y.J. & Qi, F. (2008). Refinements and sharpenings
of some double inequalities for bounding the gamma function. Journal
of Inequalities in Pure and Applied Mathematics, 9:(1)1, Art. 17; http://
www.emis.de/journals/JIPAM/article953.html.
Guo, S., Qi, F. & Srivastava, H.M. (2012). A class of logarithmically
completely monotonic functions related to the gamma function with
applications. Integral Transforms and Special Functions 23:557–566,
doi:10.1080/10652469.2011.611331.
Li, W.H., Qi, F. & Guo, B.N. (2013). On proofs for monotonicity of
a function involving the psi and exponential functions. Analysis—
International mathematical Journal of Analysis and its Applications,
:45–50, doi:10.1524/anly.2013.1175.
Li, A.J., Zhao, W.Z., & Chen, C.P. (2006). Logarithmically complete
monotonicity properties for the ratio of gamma function. Advanced
Studies in Contemporary Mathematics (Kyungshang), 13:183–191.
Lü, Y.P., Sun, T.C. & Y.M. Chu (2011). Necessary and sufficient
conditions for a class of functions and their reciprocals to be
logarithmically completely monotonic. Journal of Inequalities and
Applications, 2011:8 pages, doi:10.1186/1029-242X-2011-36.
Magnus, W., Oberhettinger, F. & Soni R.P. (1966). Formulas and
Theorems for the Special Functions of Mathematical Physics. Springer,
Berlin, doi:10.1137/1009129.
Merkle, M. (1998). Convexity, Schur-convexity and bounds
for the gamma function involving the digamma function. Rocky
Mountain Journal of Mathematics, 28:1053–1066, doi:10.1216/
rmjm/1181071755.
Mitrinović, D.S., Pečarić, J.E. & Fink, A.M. (1993). Classical
and New Inequalities in Analysis. Kluwer Academic Publishers,
doi:10.1007/978-94-017-1043-5.
Qi, F. (2007). A completely monotonic function involving the divided
difference of the psi function and an equivalent inequality involving
sums. Australian & New Zealand Industrial and Applied Mathematics
Journal, 48:523–532, doi:10.1017/S1446181100003199.
Qi, F. (2013). A completely monotonic function involving the
gamma and tri-gamma functions. arXiv preprint, http://arxiv.org/
abs/1307.5407.
Qi, F. (2010). Bounds for the ratio of two gamma functions. Journal
of Inequalities and Applications, 2010:Article ID 493058, 84 pages,
doi:10.1155/2010/493058.
Qi, F. (2014). Bounds for the ratio of two gamma functions: from
Gautschi’s and Kershaw’s inequalities to complete monotonicity.
Turkish Journal of Analysis and Number Theory, 2:152–164,
doi:10.12691/tjant-2-5-1.
Qi, F. & Berg, C. (2013). Complete monotonicity of a difference
between the exponential and trigamma functions and properties related
to a modified Bessel function. Mediterranean Journal of Mathematics,
:1685–1696, doi:10.1007/s00009-013-0272-2.
Qi, F., Cerone, P. & Dragomir, S.S. (2013a). Complete monotonicity
of a function involving the divided difference of psi functions. Bulletin
of the Australian Mathematical Society 88:309–319, doi:10.1017/
S0004972712001025.
Qi, F., Luo, Q.M. & Guo, B.N. (2013b). Complete monotonicity of
a function involving the divided difference of digamma functions.
Science China Mathematics, 56:2315–2325, doi:10.1007/s11425-012-
-0.
Qi, F. & Chen, C.P. (2004). A complete monotonicity property of the
gamma function. Journal of Mathematical Analysis and Applications,
:603–607, doi:10.1016/j.jmaa.2004.04.026.
Qi, F., Cui, R.Q., Chen, C.P. & Guo, B.N. (2005). Some completely
monotonic functions involving polygamma functions and an application.
Journal of Mathematical Analysis and Applications, 310:303–308,
doi:10.1016/j.jmaa.2005.02.016.
Qi, F. & Guo, B.N. (2004). Complete monotonicities of functions
involving the gamma and digamma functions. RGMIA Research Report
Collection, 7:Art. 8:63–72, http://rgmia.org/v7n1.php.
Qi, F. & Guo, B.N. (2009). Completely monotonic functions involving
divided differences of the di- and tri-gamma functions and some
applications. Communications on Pure and Applied Analysis, 8:1975–
, doi:10.3934/cpaa.2009.8.1975.
Qi, F. & Guo, B.N. (2010a). Necessary and sufficient conditions for
functions involving the tri- and tetra-gamma functions to be completely
monotonic. Advances in Applied Mathematics, 44:71–83, doi:10.1016/j.
aam.2009.03.003.
Qi, F. & Guo, B.N. (2010b). Some logarithmically completely
monotonic functions related to the gamma function. Journal of
the Korean Mathematical Society, 47:1283–1297, doi:10.4134/
JKMS.2010.47.6.1283.
Qi, F. & Guo, B.N. (2010c). Some properties of extended remainder
of Binet’s first formula for logarithm of gamma function. Mathematica
Slovaca, 60:461–470, doi:10.2478/s12175-010-0025-7.
Qi, F., Guo, B.N. & Chen, C.P. (2006). Some completely monotonic
functions involving the gamma and polygamma functions. Journal
of the Australian Mathematical Society, 80:81–88, doi:10.1017/
S1446788700011393.
Qi, F., Guo, B.N. & Chen, C.P. (2004). Some completely monotonic
functions involving the gamma and polygamma functions. RGMIA
Research Report Collection, 7:Art. 5:31–36, http://rgmia.org/v7n1.
php.
Qi, F., Guo, S. & Guo, B.N. (2010). Complete monotonicity of some
functions involving polygamma functions. Journal of Computational
and Applied Mathematics, 233:2149–2160, doi:10.1016/j.
cam.2009.09.044.
Qi, F., Li, W. & Guo, B.N. (2006). Generalizations of a theorem of I.
Schur. Applied Mathematics E-Notes, 6:244–250.
Qi, F. & Luo, Q.M. (2012). Bounds for the ratio of two gamma
functions—From Wendel’s and related inequalities to logarithmically
completely monotonic functions. Banach Journal of Mathematical
Analysis, 6:132–158, doi:10.15352/bjma/1342210165.
Qi, F. & Luo, Q.M. (2013). Bounds for the ratio of two gamma
functions: from Wendel’s asymptotic relation to Elezović-Giordano-
Pečarić’s theorem. Journal of Inequalities and Applications, 542, 20
pages, doi:10.1186/1029-242X-2013-542.
Qi, F., Wei, C.F. & Guo, B.N. (2012). Complete monotonicity of a
function involving the ratio of gamma functions and applications.
Banach Journal of Mathematical Analysis, 6:35–44, doi:10.15352/
bjma/1337014663.
Qi, F., Xu, S.L. & Debnath, L. (1999). A new proof of
monotonicity for extended mean values. International Journal of Mathematics and Mathematical Sciences, 22:417–421, doi:10.1155/
S0161171299224179.
Qi, F. & Zhang, S.Q. (1999). Note on monotonicity of generalized
weighted mean values. Proceedings of the Royal Society of London
Series A—Mathematical, Physical and Engineering Sciences,
:3259–3260, doi:10.1098/rspa.1999.0449.
Srivastava, H.M., Guo, S. & Qi, F. (2012). Some properties of a class
of functions related to completely monotonic functions. Computers
& Mathematics with Applications, 64:1649–1654, doi:10.1016/j.
camwa.2012.01.016.
Widder, D.V. (1946). The Laplace Transform. Princeton University
Press, Princeton.
Zhao, T.H., Chu, Y.M. & Wang, H. (2011). Logarithmically
complete monotonicity properties relating to the gamma function.
Abstract and Applied Analysis, 2011:Article ID 896483, 13 pages,
doi:10.1155/2011/896483.
Zhao, J.L., Guo, B.N. & Qi, F. (2012a). A refinement of a double
inequality for the gamma function. Publ. Math. Debrecen, 80:333–342,
doi:10.5486/PMD.2012.5010.
Zhao, J.L., Guo, B.N. & Qi, F. (2012b). Complete monotonicity of
two functions involving the tri- and tetra-gamma functions. Period.
Math. Hungar., 65:147–155, doi:10.1007/s10998-012-9562-x.