### A septic B-spline collocation method for solving the generalized equal width wave equation

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Başhan, A., Karakoç, S.B.G. & Geyikli, T. (2015). Approximation

of the KdVB equation by the quintic B-spline differential quadrature

method. Kuwait Journal of Science, 42(2):67-92.

Benjamin, T.B., Bona, J.L. & Mahony, J.J. (1972). Model equations

for long waves in non-linear dispersive systems. Philosophical

Transactions of the Royal Society of London Series A, 272:47-78.

Dag, I. & Saka, B. (2004). A cubic B-spline collocation method for

the EW equation. Mathematical and Computational Applications,

(3):381-392.

Dogan, A. (2005). Application of Galerkin’s method to equal width

wave equation. Applied Mathematics and Computation, 160(1):65-76.

Esen, A. (2005). A numerical solution of the equal width wave equation

by a lumped Galerkin method. Applied Mathematics and Computation,

(1):270-282.

Esen, A. (2006). A lumped Galerkin method for the numerical solution

of the modified equal-width wave equation using quadratic B-splines.

International Journal of Computer Mathematics, 83(5-6):449-459.

Evans, D.J. & Raslan, K.R. (2005). Solitary waves for the generalized

equal width (GEW) equation. International Journal of Computer

Mathematics, 82(4):445-455.

Fazal-i-Haq, F., Shah, I.A. & Ahmad, S. (2013). Septic B-spline

collocation method for numerical solution of the equal width wave

(EW) equation. Life Science Journal, 10(1):253-260.

Garcia-Archilla, B. (1996). A Spectral Method for the Equal Width

Equation. Journal of Computational Physics, 125(2):395-402.

Gardner, L.R.T. & Gardner, G.A. (1991). Solitary waves of the equal

width wave equation. Journal of Computational Physics, 101(1):218-

Gardner, L.R.T., Gardner, G.A., Ayoup, F.A. & Amein, N.K. (1997).

Simulations of the EW undular bore. Communications in Numerical

Methods in Engineering, 13(7):583-592.

Geyikli, T. & Karakoç, S.B.G. (2011). Septic B-spline collocation

method for the numerical solution of the modified equal width wave

equation. Applied Mathematics, 2011(2):739-749.

Geyikli, T. & Karakoç, S.B.G. (2012). Petrov-Galerkin method with

cubic B-splines for solving the MEW equation. Bulletin of the Belgian Mathematical Society-Simon Stevin, 19(2):215-227.

Hamdi, S., Enright, W.H., Schiesser, W.E., Gottlieb, J.J. & Alaal, A.

(2003). Exact solutions of the generalized equal width wave equation.

in: Proceedings of the International Conference on Computational

Science and Its Applications, LNCS, 2668:725-734.

Hamdi, S., Gottlieb, J.J. & Hansen, J.S. (2001). Numerical solutions

of the equal width wave equations using an adaptive method of lines.

In Adaptive Method of Lines, Wouver A. V., Saucez P., Schiesser W E.,

(eds). Chapman & Hall/CRC Press: Boca Raton, Florida, 65-116.

İslam, S., Haq, F. & Tirmizi, İ.A. (2010). Collocation method using

quartic B-spline for numerical solution of the modified equal width

wave equation. Journal of Applied Mathematics & Informatics, 28(3-

:611-624.

Karakoç, S.B.G. & Geyikli, T. (2012). Numerical solution of

the modified equal width wave equation. International Journal of

Differential Equations, 2012:1-15.

Karakoç, S.B.G., Ak, T. & Zeybek, H. (2014). An efficient approach

to numerical study of the MRLW equation with B-spline collocation

method. Abstract and Applied Analysis, 2014:1-15.

Karakoç, S.B.G., Zeybek, H. & Ak, T. (2014). Numerical solutions

of the Kawahara equation by the septic B-spline collocation method.

Statistics Optimization and Information Computing, 2:211-221.

Karakoç, S.B.G., Uçar, Y. & Yağmurlu, N.M. (2015). Numerical

solutions of the MRLW equation by cubic B-spline Galerkin finite

element method. Kuwait Journal of Science, 42(2):141-159.

Lu, J. (2009). He’s variational iteration method for the modified equal

width equation. Chaos, Solitons and Fractals, 39(5):2102-2109.

Panahipour, H. (2012). Numerical simulation of GEW equation using

RBF collocation method. Communications in Numerical Analysis,

:1-28.

Peregrine, D.H. (1967). Long waves on a beach. Journal of Fluid

Mechanics, 27:815-827.

Prenter, P.M. (1975). Splines and variational methods, John Wiley,

New York. Pp:323

Raslan, K.R. (2005). Collocation method using quartic B-spline for the

equal width (EW) equation. Applied Mathematics and Computation,

(2):795-805.

Raslan, K.R. (2006). Collocation method using cubic B-spline for the

generalised equal width equation. International Journal of Simulation

and Process Modelling, 2:37-44.

Roshan, T. (2011). A Petrov-Galerkin method for solving the

generalized equal width (GEW) equation. Journal of Computational

and Applied Mathematics, 235:1641-1652.

Rubin, S.G. & Graves, R.A. (1975). A cubic spline approximation for

problems in fluid mechanics. NASA TR R-436, Washington, DC.

Saka, B. (2007). Algorithms for numerical solution of the modified

equal width wave equation using collocation method. Mathematical

and Computer Modelling, 45(9-10):1096-1117.

Taghizadeh, N., Mirzazadeh, M., Akbari, M. & Rahimian, M. (2013).

Exact solutions for generalized equal width equation. Mathematical

Sciences Letters 2, 2:99-106.

Wazwaz, A.M. (2006). The tanh and the sine-cosine methods for a

reliable treatment of the modified equal width equation and its variants.

Communications in Non-linear Science and Numerical Simulation,

(2):148-160.

Zaki, S.I. (2001). Solitary waves induced by the boundary forced EW

equation. Computer Methods in Applied Mechanics and Engineering,

:4881-4887.

### Refbacks

- There are currently no refbacks.