An integrated approach to evaluate the hydrocarbon potential of Jurassic Samana Suk Formation in Middle Indus Basin, Pakistan


  • Muhammad Armaghan Faisal Miraj Institute of Geology
  • Abid Ali Institute of Geology, University of the Punjab, Lahore 54000, Pakistan
  • Hassan Javaid Oil & Gas Development Company, Pakistan
  • Pal Washa S. Rathore Institute of Geology, University of the Punjab, Lahore 54000, Pakistan
  • Naveed Ahsan institute of Geology, University of the Punjab, Lahore, Pakistan.
  • Rana F. Saleem Institute of Geology, University of the Punjab, Lahore 54000, Pakistan
  • Sher Afgan Institute of Geology, University of the Punjab, Lahore 54000, Pakistan
  • Muhammad B. Malik Institute of Geology, University of the Punjab, Lahore 54000, Pakistan



Lower Indus Basin, Subsurface Structure, Seismic Interpretation, Rock Physics


The Indus Basin is consider as prolific hydrocarbon bearing province of Pakistan. The study area lies in Middle Indus Basin, Pakistan, which is separated from Upper Indus Basin by Sargodha High. The research emphasizes on two-dimensional subsurface seismic interpretation of (Gojra block) and rock physics evaluation to estimate reservoir properties of Jurassic age i.e. Samana Suk Formation (Carbonate). Carbonate reservoirs have different heterogeneities including irregular distribution and porosity types making it difficult for reservoir estimation. Therefore, rock physics is vital in estimating reservoir properties using shear and compressional wave velocities. Data from nine 2-D seismic lines and two wells have been deliberated comprehensively. Five imperative reflectors were marked specifically (Salt Range Formation (Pre-Cambrian), Amb Formation (Permian), Samana Suk Formation (Jurassic), Dungan Formation (Paleocene) and of Eocene age and faults affecting the Paleozoic to Cenozoic strata in area. Time contour maps were constructed using seismic lines based on two-way travel time (TWT). The interpretive results from time contour maps indicate that most of the producing zones lie in north-westward direction at Jurassic level (Samana Suk Formation). The results also reveal that prospect zones tend to become thin in northeast, and thick in southwest. Rock physics interpretation of Samana Suk Formation indicates fair reservoir characterizations. As the results obtained from Poisons ratio, Bulk Modulus, Shear Modulus, Shear wave velocity, primary wave velocity, Vp/Vs ratio & Density model clearly shows presence of hydrocarbons in Samana Suk Formation level.

Author Biography

Muhammad Armaghan Faisal Miraj, Institute of Geology

Assistant Professor


Abbasi, A. H., Mehmood, F., & Kamal, M. (2014). Shale oil and gas: lifeline for Pakistan (pp. 85-87). Islamabad: Sustainable Development Policy Institute.Asquith, G. and Krygowski, D., 2004. AAPG Methods in Exploration, No. 16, Chapter 7: Log Interpretation.

Avseth, P., Mukerji, T., Mavko, G., & Dvorkin, J. (2010). Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high-porosity siliciclastic sediments and rocks—A review of selected models and suggested work flows. Geophysics, 75(5), 75A31-75A47.

Azeem, T., Chun, W. Y., Khalid, P., Qing, L. X., Ehsan, M. I., Munawar, M. J., & Wei, X. (2017). An integrated petrophysical and rock physics analysis to improve reservoir characterization of Cretaceous sand intervals in Middle Indus Basin, Pakistan. Journal of Geophysics and Engineering, 14(2), 212-225.

Battani, A., Sarda, P., & Prinzhofer, A. (2000). Basin scale natural gas source, migration and trapping traced by noble gases and major elements: the Pakistan Indus basin. Earth and Planetary Science Letters, 181(1-2), 229-249.

Batzle, M., Han, D. H., & Hofmann, R. (2001). Optimal hydrocarbon indicators. In SEG Technical Program Expanded Abstracts 2001 (pp. 1697-1700). Society of Exploration Geophysicists.

Castagna, J. P., Batzle, M. L., & Eastwood, R. L. (1985). Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. geophysics, 50(4), 571-581.

Castagna, J. P., & Backus, M. M. (Eds.). (1993). Offset-dependent reflectivity—Theory and practice of AVO analysis. Society of Exploration Geophysicists

Caumon, G., Collon-Drouaillet, P. L. C. D., De Veslud, C. L. C., Viseur, S., & Sausse, J. (2009). Surface-based 3D modeling of geological structures. Mathematical Geosciences, 41(8), 927-945.

Dobrin, M. B., & Savit, C. H. (1960). Introduction to geophysical prospecting (Vol. 4). New York: McGraw-hill.

Eberli, G. P., Baechle, G. T., Anselmetti, F. S., & Incze, M. L. (2003). Factors controlling elastic properties in carbonate sediments and rocks. The Leading Edge, 22(7), 654-660.

Shiri, S., & Falahat, R. (2019). Rock physics modeling and 4D seismic feasibility study in one of the Iranian carbonate reservoirs. Journal of Applied Geophysics, 103855.

Gardner, G. H. F., Gardner, L. W., & Gregory, A. R. (1974). Formation velocity and density—The diagnostic basics for stratigraphic traps. Geophysics, 39(6), 770-780.

Gassaway, G. S., Brown, R. A., & Bennett, L. E. (1986, January). Pitfalls in Seismic Amplitude vs. Offset Analysis: Case Histories. In Offshore Technology Conference. Offshore Technology Conference.Groshong Jr, R.H., 2006. 3-D structural geology (pp. 305-371). Springer-Verlag Berlin Heidelberg.

Hamada, G. M. (2004). Reservoir fluids identification using Vp/Vs ratio?. Oil & Gas Science and Technology, 59(6), 649-654.

Iqbal, S., Akhter, G., & Bibi, S. (2015). Structural model of the Balkassar area, Potwar Plateau, Pakistan. International Journal of Earth Sciences, 104(8), 2253-2272.

Jackson, M. D., Gomes, J. L. M. A., Mostaghimi, P., Percival, J. R., Tollit, B. S., Pavlidis, D., ... & Blunt, M. J. (2013, February). Reservoir modeling for flow simulation using surfaces, adaptive unstructured meshes, and control-volume-finite-element methods. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers.

Kadri, I. B. (1995). Petroleum geology of Pakistan. Pakistan Petroleum Limited.

Kazmi, A. H., & Jan, M. Q. (1997). Geology and tectonics of Pakistan. Graphic publishers.

Kingston, D. R., Dishroon, C. P., & Williams, P. A. (1983). Global basin classification system. AAPG bulletin, 67(12), 2175-2193.

Labourdette, R., Hegre, J., Imbert, P., & Insalaco, E. (2008). Reservoir-scale 3D sedimentary modelling: approaches to integrate sedimentology into a reservoir characterization workflow. Geological Society, London, Special Publications, 309(1), 75-85.

Lee, M. W. (2010). Predicting S-wave velocities for unconsolidated sediments at low effective pressure. U. S. Geological Survey.

Powell, C. M. (1979). A speculative tectonic history of Pakistan and surroundings. Geodynamics of Pakistan.

Raza, H. A., Ahmed, R., Alam, S., & Ali, S. M. (1989). Petroleum zones of Pakistan. Pakistan Journal of Hydrocarbon Research, 1(2), 1-20.

RICHARD, H. G. (2006). 3-D STRUCTURAL GEOLOGY: A Practical Guide to Quantitative Surface and Subsurface Map... Interpretation. Springer.

Rider, M. H. (1986). The geological interpretation of well logs.

Robinson, A. (Ed.). (2008). The future of geological modelling in hydrocarbon development. Geological Society of London.

Sheikh, N., & Giao, P. H. (2017). Evaluation of shale gas potential in the Lower Cretaceous Sembar Formation, the Southern Indus Basin, Pakistan. Journal of Natural Gas Science and Engineering, 44, 162-176.

Sheikh, R. A., Jamil, M. A., McCann, J., & Saqi, M. I. (2003, October). Distribution of Infracambrian reservoirs on Punjab Platform in Central Indus Basin of Pakistan. In Proc. ATC 2003 Conf. and Oil Show, Islamabad (pp. 1-17).

Stampfli, G. M., Hochard, C., Vérard, C., & Wilhem, C. (2013). The formation of Pangea. Tectonophysics, 593, 1-19.

Xu, S., & Payne, M. A. (2009). Modeling elastic properties in carbonate rocks. The Leading Edge, 28(1), 66-74.





Earth & Environment