Production, purification and identification of glycine,N-(m-anisoyl)-methyl ester from Pseudomonas aeruginosa with antimicrobial and anticancer activities.

Authors

  • sawsan Abd ellatif city of scientific research and technology application http://orcid.org/0000-0002-7518-3759
  • Nermine N. Abed Botany and Microbiology Dept., Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt.
  • Amira Y. Mahfouz Botany and Microbiology Dept., Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt.
  • Enayat M. Desouky Botany and Microbiology Dept., Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt.
  • Dalia K. Abd El Hamid Botany and Microbiology Dept., Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt.

DOI:

https://doi.org/10.48129/kjs.v48i3.9150

Keywords:

Antibiotic resistance, Antimicrobial, Pseudomonas aeruginosa, Glycine, N-(m-anisoyl)-methyl ester, IR spectroscopy, 16S rRNA gene, GC-mass.

Abstract

The present research is a trial to extract antimicrobial and anticancer substance(s) from Pseudomonas aeruginosa. The bacterial isolate S1B20 exhibited the highest antimicrobial activity and is identified on the basis of 16S rRNA gene sequence as Pseudomonas aeruginosa MG429777. Extraction of various antimicrobial substance(s) (both proteinous and non-proteinous substances) were carried out. About applying the extract of antimicrobial substances from Pseudomonas aeruginosa MG 429777, chloroform established to be the strongest solvent for extraction of the antimicrobial substance, while 60% ammonium sulfate saturation stage was the brightest to obtain active bacteriocin fraction. The molecular weight of the refined bacteriocins estimated as 124 kDa. Quantitative results of GC-mass spectral analysis and IR spectroscopy of nonproteinaceous and proteinous antimicrobial agent delivered by Pseudomonas aeruginosa MG429777 was Oxime methoxy phenyl and Glycine, N-(m-anisoyl)-methyl ester. The research concern mainly on the application of  Glycine, N-(m-anisoyl)-methyl ester that proved to have a distinct antibacterial and antitumor force against three carcinoma cell lines.

 

References

Abdi-Ali, A., Worobec, E.A. & Deezagi, A. et al., (2004). Cytotoxicity effects of pyocin S2 produced by Pseudomonas aeruginosa on the growth of three human cell lines. Canadian Journal of Microbiology, 50, 375–381. DOI: 10.1139/w04-019

Abeer F., Ghaidaa J.M. & Imad H.H. (2018). Characterization of Antibacterial and Antifungal Metabolites Produced by Macrophomia phaseolus and Analysis of Its Chemical Compounds Using GC-MS. Indian Journal of Public Health Research and Development 9(3). DOI: 10.5958/0976-5506.2018.00240.1

Altschul, S., Madden, T.L., Scha¡er, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J., (1997). Gapped BLAST and PSI-Blast: a new generation of protein database search programms. Nucleic Acids Research, 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389

Balouiri, M.; Sadiki, M. & Ibnsouda, S. K., (2016). Methods for in vitro evaluating antimicrobial activity: A review, Journal of Pharmaceutical Analysis, 6: 71-79. DOI: 10.1016/j.jpha.2015.11.005

Barghouthi, S.A., Ayyad, I., Ayesh, M. & Abu-Lafi, S., (2017). Isolation, Identification, and Characterization of the Novel Antibacterial Agent Methoxyphenyl-Oxime from Streptomyces pratensis QUBC97 Isolate. Journal of Antibiotic Resesearch, 1(1): 105–112.

DOI: 10.15744/2574-5980.1.105

Bashir, S.B.M., Khan, M., Babar, S., Andleeb, M., Hafeez, S.A., & Khan. M.F., (2014). Assessment of Bioautography and Spot Screening of TLC of Green Tea (Camellia) Plant Extracts as Antibacterial and Antioxidant Agents. Indian Journal of Pharmaceutical Science, 76(4): 364–370. PubMed PMID: 25284935; PubMed Central PMCID: PMC4171874.

Carrasco, F., Pages, P., Lacorte, T. & Briceno, K., (2005). Fourier transforms IR and differential scanning calorimetry study of curing of trifunctional amino-epoxy resin. Journal of Applied Polymer Science, 98:1524- 1535. DOI: 10.1002/app.21978

Chairany S., Sudibyo M. & Abdul Rohman, (2018). Application of Fourier transform infrared (FTIR) spectroscopy coupled with multivariate calibration for quantitative analysis of curcuminoid in tablet dosage form. Journal of Applied Pharmaceutical Science, 8(08): 151-156. DOI: 10.7324/JAPS.2018.8821

Dahpour, A.A., Rahdari P. & Sobati, Z (2012). Chemical composition of essential oil, antibacterial activity and brine shrimp lethality of ethanol extracts from Sedum pallidum. Journal of Medicinal Plants Research,6(16):31053109.https://doi.org/10.5897/JMPR11.1270.

Dingemans, J. Ghequire, M.G. Craggs, M., De Mot, R. & Cornelis, P., (2016). Identification and functional analysis of a bacteriocin,pyocin S6, with ribonuclease activity from a Pseudomonas aeruginosa cystic fibrosis clinical isolate. Microbiology open, 5(3), 413–423. DOI: 10.1002/mbo3.339

Enayat , M.D., Nermine, N.A., Sawsan, A.A., Amira, Y.M., & Dalia K.A., (2017). Isolation of antimicrobial agent- producing microorganisms and optimization of culture conditions for antimicrobial activity. African Journal of Mycology & Biotechnology, 22(3): 1-22.

Gomha, S.M., Riyadh, S.M., Mahmmoud, E.A. & Elaasser, M.M. (2015). Synthesis and Anticancer Activities of Thiazoles, 1,3-Thiazines and Thiazolidine Using Grafted Poly(vinylpyridine) as Basic Catalyst. Heterocycles, 91(6): 1227–1243. DOI 10.1007/s10593-016-1815-9

Hou, Y., Yin, Y., & Wu, G. (2015). Dietary essentiality of "nutritionally non-essential amino acids" for animals and humans. Experimental biology and medicine (Maywood, N.J.), 240(8): 997–1007. doi:10.1177/1535370215587913

Kajimura, Y. & Kaneda, M., (1996). Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8, Taxonomy, fermentation, isolation, structure elucidation and biological activity. Journal of Antibiotic, 49(2):129-135. https://doi.org/10.7164/antibiotics.49.129

Kim, B.; Sabin, N.; Minnikin, D.E.; Zerwinska, J.; Mordarski, M. & Good Fellow, M. (2017): Classification of thermophilic Streptomyces including the

description of Streptomyces thermo alkali tolerant sp. International Journal of Systematic Bacteriology, 49: 7- 17.

Koo, S.J., Kuramochi, H., & Chae, S.H. (2006). Herbicidal efficacy and selectivity of pyribenzoxim in turfgrasses. Weed Biology and Management, 6:96–101.

Li, L., Li, Z., Wang, K., Liu, Y., Li, Y., & Wang, Q. (2016). Synthesis and antiviral, insecticidal, and fungicidal activities of gossypol derivatives containing alkylimine, oxime or hydrazine moiety. Bioorganic and Medicinal Chemestry, 24:474–483.

Mosmann, T., (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65: 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

Muhammad, N., Akbar, A., Abbas, G., Hussain, M. & Khan, T.A., (2015). Isolation, Optimization and Characterization of Antimicrobial peptide Producing Bacteria from Soil. Journal of Animal and Plant Science, 25(4), 1107-1113. DOI: 10.3923/pjbs.2016.191.201

Naruse, N., Tenmyo, O., Kobaru, S., Hatori, M., Tomita, K., Hamagishi, Y. & Oki, T., (1993). New antiviral antibiotics, Kistamicins A and B I- Taxonomy, production, isolation, physic-chemical properties and biological activities. Journal of Antibiotics, 46(12): 1804-1811. https://doi.org/10.7164/antibiotics.45.1467

Naz, S.A., Jabeen, N., Sohail, M. & Rasool, Sh. A., (2015). Biophysico chemical characterization of Pyocin SA189 produced by Pseudomonas aeruginosa SA189. Brazilian Journal of Microbiology, 46(4): 1147-1154. doi: 10.1590/S1517-838246420140737

Özyürek, S.B., Gür, S.D. & Bilkay, I.S., (2016). Investigation of Antimicrobial Activity of Pseudomonas aeruginosaStrains Isolated from Different Clinical Specimens. Hacettepe Journal Biology & Chemestry, 44 (1): 1–6. DOI: 10.15671/HJBC.20164417526

Pirnay, J.P. Bilocq, F., Pot, B., Cornelis, P., Zizi, M. & Van Eldere, J. et al., (2009). Pseudomonas aeruginosa population structure revisited. PLOS ONE, 4 (11): e7740. DOI: 10.1371/journal.pone.0007740

Riley, M.A. & Gordon, D.M. (1999). The ecological role of bacteriocins in bacterial competition. Trends in Microbiology, 7: 129–133. DOI: https://doi.org/10.1016/S0966842X(99)01459-6

Riley, M.A. & Wertz, J.E., (2002a). Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie, 84: 357–364. https://doi.org/10.1016/S0300-9084(02)01421-9

Sanghi, R., & Verma, P., (2009). Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresource Technolology, 100: 501-504. DOI: 10.1016/j.biortech.2008.05.048

Singh, N., Karpichev, Y., Tiwari, A.K., Kuca, K., & Ghosh, K.K. (2015). Oxime functionality in surfactant self-assembly: an overview on combating toxicity of organophosphates. Journal of Molecular Liquids, 208:237–252.

Song, B.A., Liu, X.H., Yang, S., Hu, D.Y., Jin, L.H., & Zhang, Y.T. (2005). Recent advance in synthesis and biological activity of oxime derivatives. Chinese Journal of Organic Chemistry, 25:507–525.

Sørensen M., Neilson E.H.J., & Møller B.L. (2018). Oximes: Unrecognized Chameleons in General and Specialized Plant Metabolism. Molecular Plant. 11, 95–117. https://doi.org/10.1016/j.molp.2017.12.014

Streeter, K. and Katouli, M. (2017). Pseudomonas aeruginosa: A review of their Pathogenesis and Prevalence in Clinical Setting and the Environment. InfectionEpidemiology and Medicine.,2(1): 25- 32.

Syed A.M., & Safia A., (2015). Production and characterization of a new antibacterial peptide obtained from Aeribacillus pallidus SAT4. Biotechnology Reports (Amst). 8: 72 80.doi: 10.1016/j.btre.2015.09.003

Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G., (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Research, 25(24): 4876-82. PubMed PMID: 9396791; PubMed Central PMCID: PMC147148.

Vamanu, E., (2012). In vitro antimicrobial and antioxidant activities of ethanolic extract of lyophilized mycelium of Pleurotus ostreatus PQMZ1109. Molecules, 17: 3653- 3671. doi: 10.3390/molecules17043653

Vigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V., Nachane, R.P., Paralikar, K.M. & Balasubramanya, R.H., (2006). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials Letter, 61: 1413-1418. http://dx.doi.org/10.1016/j.matlet.2006.07.042

Vithiya K. & Sen, S. (2010). Biosynthesis of nanoparticles. International Journal Pharmaceutical Science Research, 2(11):2781-85. DOI: http://dx.doi.org/10.13040/IJPSR.0975-8232.

Wang, X.B., Chen, M.H., Li, Q., Zhang, J.P., Ruan, X.H., Xie, Y., & Xue, W. (2017). Synthesis and antiviral activities of novel penta-1,4- diene-3-one oxime derivatives bearing a pyridine moiety. Chemical Papers, 71:1225–1233.

Wilson, A.P. (2000): Cytotoxicity and viability assays in animal cell culture: A Practical Approach, 3rd ed. (Masters, J.R.W. ed.), Oxford University Press.

Woappi, Y., Gabani, P., & Singh, O.V. (2013). Emergence of Antibiotic- Producing Microorganisms in Residential versus Recreational Microenvironments, Br Microbiological Research Journal, 3(3): 280- 294. DOI:10.9734/BMRJ/2013/3205

Published

24-06-2021