Efficient transformed ratio-type estimator using single auxiliary information

Authors

  • Sana Amjad Dept. of Statistics, University of the Punjab Lahore, Pakistan
  • Ismail Muhammad Dept. of Statistics, COMSATS University Islamabad, Lahore Campus Lahore, Pakistan

DOI:

https://doi.org/10.48129/kjs.v48i2.9030

Keywords:

Auxiliary information, bias, mean square error, study variable, simple random sampling.

Abstract

This paper purposes an efficient transformed ratio-type estimator for the estimation of population variance of study variable (y) by utilizing single auxiliary information (x) under simple random sampling without-replacement. Efficiency comparison of suggested estimator has been done with some widely used existing estimators by taking real life data and simulation study. The suitability of the new estimator can be seen through empirical analysis and simulation study over the widely used existing estimators.

Author Biography

Ismail Muhammad, Dept. of Statistics, COMSATS University Islamabad, Lahore Campus Lahore, Pakistan

Dr. Muhammad Ismail

Head of Statistics Department

References

References:

Arcos, A., Rueda, M., Martinez, M. D., Gonzalez, S., & Roman, Y. (2005) Incorporating the auxiliary information available in variance estimation. Applied Mathematics and Computation, 160, 387-399

Isaki, C. T. (1983) Variance estimation using auxiliary information. Journal of the

American Statistical Association, 78: 381, 117-123

Ismail, M., Kanwal, N., & Shahbaz, M.Q. (2018) Generalized ratio-product-type estimator for variance using auxiliary information in simple random sampling. Kuwait Journal of Science, 45(1), 67-75

Kadilar, C., & Cingi, H. (2004) Ratio estimators in simple random sampling. Journal of Applied Mathematics and Computation, 151, 893-902

Kadilar, C., & Cingi, H. (2006) Ratio estimators for the population variance in simple and stratified random sampling. Journal of Applied Mathematics and Computation, 173, 1047-1059

Kadilar, C., & Cingi, H. (2007) Improvement in variance estimation in simple random sampling. Journal of Communications in Statistics, 36, 2075-2081

Lone, H. A., & Tailor, R. (2017) Estimation of population variance in simple random sampling. Journal of Statistics and Management Systems, 20(1), 17-38

Subramani, J., & Kumarapandiyan, G. (2012a) Variance estimation using median of the auxiliary variable. International Journal of Probability and Statistics, 1(3), 62-66

Subramani, J., & Kumarapandiyan, G. (2012b) Variance estimation using quartiles and their functions of an auxiliary variable. International Journal of Statistics and Applications, 2(5), 67-72

Singh, H. P., & Solanki, R. S. (2013a) A new procedure for variance estimation in simple random sampling using auxiliary information. Stat papers, 54, 479-497

Singh, H. P., & Solanki, R. S. (2013b) Improved estimation of finite population variance using auxiliary information. Communications in Statistics-Theory and Methods, 42, 2718-2730

Subramani (2015) Generalized modified ratio type estimator for estimation of population variance. Sri Lankan Journal of Applied Statistics, 16(1)

Upadhyaya, L. N. & Singh, H. P. (1999) An estimator for population variance that utilizes the kurtosis of an auxiliary variable in survey sampling. Vikram Mathemat. Journal, 19: 14-17.

Published

05-04-2021