Casson fluid flow with heat and mass transfer in a channel using DTM

Authors

  • asia yasmin
  • Kashif ali
  • Muhammad ashraf

DOI:

https://doi.org/10.48129/kjs.v49i1.8613

Keywords:

Casson fluid, channel flow, shrinking walls, differential transform method (DTM), quasi-linearization method (QLM)

Abstract

In present investigation, we consider the heat and mass transfer characteristics of steady Casson fluid in channel, where fluid is also electrically conducting and incompressible. The effect of chemical reaction has also considered. The differential transform method (approach) (DTM) was carried out to scheme of nonlinear ODE'S and answers are acquired in the form of DTM series. The principal gain of approach is that it can be functional immediately to the non linear DE’s without requiring discretization, linearization or perturbation. The current results for velocity, mass and heat transfer are in good agreement with those provided by quasi-linearization method (QLM). Graphical results for velocity, concentration and temperature are presented for distinct values of governing constraints.

References

N. T. M. Eldabe, B. M. Agoor and H. Alame. Hindawi Pub. Corpor. J. of Fluid, (2014) doi:org/10.1155/2014/525769.

L. Batra and A. Kandasamy. polymer-plastics tech. and engin., 31, 527-540 (2006).

G. Sarojamma, B. Vasundhara and K. Vendabai. Int. J. of Sci. and Inn. Math. Research (IJSIMR), 2 (10), 800-810 (2014).

K. Ramesh and M. Devaker. Ain Shams Engin. J., 6, 967-975 (2015).

C. S. K. Raju, N. Sandeep, V. Sugunamma, M. Jayachandra Babu and J.V. Ramana Reddy. Engin. Sci. and Tech. an Int. J., (2015), doi: 10.1016/j.jestch.2015.05.010.

A. Haritha and G. Sarojamm. Int. J. of Appl. Math., 29, 1287 -1292 (2014).

M. Ashraf, M. A. Kamal, and K.S. Syed. Comp. and Fluids, 38, 1895-1902 (2009).

X. H. SI, L. C. Zheng, X. X. Zhang and Y. Chao. Appl. Math. and Mech. (English Edition), 31, 1073–1080 (2010).

K. Ali, M. Ashraf and N. Jameel. Canadian J. of Phy., 92, 987-996 (2014).

M. Sheikholeslami, H. R. Ashorynejad, D. D. Ganji1 and M. M. Rashidi. Int. Sci. publ. and Cons. Services (ISPCS), (2014), doi:10.5899/2014/cna-00166.

K. Ali and M. Ashraf. J. of Theor. and Appl. Mech., 52, 557- 569 (2014).

K. Ali, S. Ahmad and M. Ashraf. AIP Advances, vol. 5, doi: 10.1063/1.4928574 (2015).

I. H. Abdel-Halim Hassan, Appl. Math. Comput, 127, 1-22 (2002).

S. Momania and V. Suat Ert¨urk. Comp. and Math. with App., 55, 833-842 (2008).

R. Abazari and A. Borhanifar. Com. and Math. with Appl., 59, 2711-2722 (2010).

A. Fereidoon, M. R. Davoudabadi, Yaghoobi, H. and D. D. Ganji. World Appl. Sci. J., 9, 681-688 (2010).

A. A. Joneidi, D. D. Ganji and M. Babaelahi. Int. Comm. in Heat and Mass Tran., 36(7), 757-762 (2009).

J. K. Zhou. Hauzhong univ. press, wuhan, china, (in chinese), (1986).

C. K. Chen and S. H. Ho. Appl. Math. Comput., 106, 171-170 (1999).

F. Ayaz. 147, 547-567 (2004).

C. Y. Wang. Nonlinear Analysis: Real World Appl., 10, 375–380 (2009).

T. Fang. J. Zhang and S. Yao. Comm. in Nonlin. Sci. and Num. Simul., 14, 3731–3737 (2009).

S. Mukhopadhyay and H. I. Andersson. Heat and Mass Tran., 45, 1447-1452 (2009).

K. Bhattacharyya, S. Mukhopadhyay and G. C. Layek. Int. J. of Heat and Mass Tran., 54 308–313 (2011).

F. Aman, A. Ishak and I. Pop. App. Math. and Mech. Eng. Ed., 32, 1599–1606 (2011).

T. Fang, S. Yao, J. Zhang and A. Aziz. Comm. in Nonlin. Sci. and Num. Simul., 15, 1831–1842 (2010).

Published

02-12-2021