Some Topological Properties of The Set of Filter Cluster Functions

Authors

  • Huseyin Albayrak Süleyman Demirel University
  • Serpil Pehlivan Süleyman Demirel University
  • Ram N. Mohapatra University of Central Florida

Keywords:

F-cluster function, F-limit function, limit function

Abstract

In [1], we generalized the concepts of pointwise convergence, uniform convergence and alpha-convergence for sequences of functions on metric spaces by using the filters on N. Then, in [2], we defined the concepts of limit function, F-limit function and F-cluster function respectively for each of these three types of convergence, where F is a filter on N. In this work, we investigate some topological properties of the sets of F-pointwise cluster functions, F-alpha-cluster functions and F-uniform cluster functions by using pointwise and uniform convergence topologies.

References

Albayrak, H. & Pehlivan, S. 2013. Filter exhaustiveness and F-convergence of function sequences. Filomat 27(8): 1373-1383.

Albayrak, H. & Pehlivan, S. (Submitted). The set of filter cluster functions.

Aviles Lopez, A., Cascales Salinas, B., Kadets, V. & Leonov, A. 2007. The Schur ℓ₁ theorem for filters. J. Math. Phys. Anal. Geom. 3(4): 383-398.

Balcerzak, M., Dems, K. & Komisarski, A. 2007. Statistical convergence and ideal convergence for sequences of functions. J. Math. Anal. Appl. 328: 715-729.

Boccuto, A., Dimitriou, X., Papanastassiou, N. & Wilczyński, W. 2011. Ideal exhaustiveness, continuity and (α)-convergence for lattice group-valued functions. Int. J. Pure Appl. Math. 70(2): 211-227.

Buck, R.C. 1953. Generalized asymptotic density. Amer. J. Math. 75: 335-346.

Carathéodory, C. 1929. Stetige konvergenz und normale Familien von Funktionen. Math. Ann. 101(1): 515-533.

Caserta, A. & Kočinac, Lj.D.R. 2012. On statistical exhaustiveness. Appl. Math. Letters 25(10): 1447-1451.

Činčura, J., Šalát, T., Sleziak, M. & Toma, V. 2004/05. Sets of statistical cluster points and I-cluster points. Real Anal. Exchange 30(2): 565-580.

Connor, J.S. & Kline, J. 1996. On statistical limit points and consistency of statistical convergence. J. Math. Anal. Appl. 197(2): 392-399.

Das, R. & Papanastassiou, N. 2003/2004. Some types of convergence of sequences of real valued functions. Real Anal. Exchange 29(1): 43-59.

Di Maio, G. & Kočinac, Lj.D.R. 2008. Statistical convergence in topology. Topol. Appl. 156(1): 28-45.

Engelking, R. 1989. General Topology (Revised and completed edition). Heldermann Verlag, Berlin.

Fast, H. 1951. Sur la convergence statistique. Colloq.Math. 2: 241-244.

Fridy, J.A. 1993. Statistical limit points. Proc. Am. Math. Soc. 118(4): 1187-1192.

Gregoriades, V. & Papanastassiou, N. 2008. The notion of exhaustiveness and Ascoli-type theorems. Topol. Appl. 155(10): 1111-1128.

Kadets, V., Leonov, A. & Orhan, C. 2010. Weak statistical convergence and weak filter convergence for unbounded sequences. J. Math. Anal. Appl. 371: 414-424.

Katětov, M. 1968. Products of filters. Comment. Math. Univ. Carolinae 9: 173-189.

Kelley, J.L. 1955. General Topology. D. Van Nostrand Company, Toronto-New York-London.

Kostyrko, P., Šalát, T. & Wilczyński, W. 2000/01. I-convergence. Real Anal. Exchange 26(2): 669-685.

Kostyrko, P., Mačaj, M., Šalát, T. & Strauch, O. 2001. On statistical limit points. Proc. Amer. Math. Soc. 129(9): 2647-2654.

Kostyrko, P., Mačaj, M., Šalát, T. & Sleziak, M. 2005. I-convergence and extremal I-limit points. Math. Slovaca 55(4): 443-464.

Mamedov, M.A. & Pehlivan, S. 2000. Statistical convergence of optimal paths. Math. Japon. 52(1): 51-55.

Mamedov, M.A & Pehlivan, S. 2001. Statistical cluster points and turnpike theorem in nonconvex problems. J. Math. Anal. Appl. 256(2): 686-693.

Miller, H.I. 1995. A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc. 347: 1811-1819.

Niven, I. 1951. The asymptotic density of sequences. Bull. Amer. Math. Soc. 57: 420-434.

Pehlivan, S. & Mamedov, M.A. 2000. Statistical cluster points and turnpike. Optimization 48(1): 93-106.

Pehlivan, S., Güncan, A. & Mamedov, M.A. 2004. Statistical cluster points of sequences infinite dimensional spaces. Czechoslovak Math. J. 54(129): 95-102.

Stoilov, S. 1959. Continuous convergence. Rev. Math. Pures Appl. 4: 341-344.

Willard, S. 1970. General Topology. Addison-Wesley Publishing Company, Massachusetts.

Zaslavski, A.J. 2006. Turnpike Properties in the Calculus of Variations and Optimal Control. Springer, New York.

Downloads

Published

08-08-2016