Lacunary strong A -convergence sequence spaces defined by a sequence of moduli

Authors

  • AYHAN ESI Adiyaman University, Science and Art Faculty, Department of Mathematics, 02040, Adiyaman, Turkey.

Keywords:

Lacunary sequence, modulus function, statistical convergence.

Abstract

ABSTRACT

The definition of lacunary strong A-convergence to a modulus is extended to a definition of lacunary strong A -convergence with respect to a sequence of moduli. We study some connections between lacunary strong A -convergence with respect to a sequence of moduli and lacunary A -statistical convergence, where A is a sequence of matrices   of complex numbers.

References

REFERENCES

Bilgin, T. 2001. Lacunary strong A-convergence with respect to a modulus. Mathematica XLVI 4: 39-46.

Bilgin, T. 2004. Lacunary strong A-convergence with respect to a sequence of modulus function. Applied Mathematics and Computation 151: 595-600.

Connor, J. S. 1988. The statistical and strong p-Cesaro convergence of sequences. Analysis 8: 47-63.

Connor, J. S. 1989. On strong matrix summability with respect to a modulus and statistical convergence. Canadian Mathematical Bulletin 32: 194-198.

Esi, A. 1995. Some new sequence spaces defined by a modulus function. Institute of Mathematics & Computer Sciences. Journal. (Mathematics Series) 8(2): 81-86.

Esi, A. 1996. The A-statistical and strongly (A-p)-Cesaro convergence of sequences. Pure and Applied Mathematika Sciences XLIII (1-2): 89-93.

Esi, A. 1997. Some new sequence spaces defined by a sequence of moduli. Turkish Journal of Mathematics 21: 61-68.

Fast, H. 1951. Sur la convergence statistique. Colloquium Mathematicum 2: 241-244.

Connor, J.S. 1988. The statistical and strong p-Cesaro convergence of sequences. Analysis 8: 47-63.

Freedman, A. R., Sember, J. J., Raphel, M. 1978. Some Cesaro-type summability spaces. Proceedings of the London Mathematical Society 37(3): 508-520.

Fridy, J. 1985. On statistical convergence. Analysis 5: 301-313.

Fridy, J. & Orhan, C. 1993. Lacunary statistical convergence. Pacific Journal of Mathematics 160: 45-51.

Kolk, E. 1993. On strong boundedness and summability with respect to a sequence moduli. Tartu Ülikooli Toimetised 960: 41-50.

Maddox, I. J. 1970. Elements of Functional Analysis. Cambridge University Press, Cambridge.

Maddox, I. J. 1986. Sequence spaces defined by a modulus. Mathematical Proceedings of the Cambridge Philosophical Society 100: 161-166.

Maddox, I. J. 1987. Inclusion between FK spaces and Kuttner’s theorem. Mathematical Proceedings of the Cambridge Philosophical Society 101: 523-527.

Nakano, H. 1953. Concave modular. Journal of the Mathematical Society of Japan 5: 29-49.

Pehlivan, S. & Fisher, B. 1994. On some sequence spaces. Indian Journal of Pure and Applied Mathematics 25(10): 1067-1071.

Pehlivan, S. & Fisher, B. 1995. Lacunary strong convergence with respect to a sequence of modulus function. Commentationes Mathematicae Universitatis Carolinae 36(1): 69-76.

Ruckle, W. H. 1973. FK spaces in which the sequence of coordinate vectors is bounded. Canadian Journal of Mathematics 25: 973-978.

Salat, T. 1980. On statistically convergent sequences of real numbers. Mathematica Slovaca 139-150.

Schoenberg, I. J. 1959. The integrability of certain functions and related summability methods. American Mathematical Monthly 66: 261-275.

Downloads

Published

03-09-2013