Relations between a Dual Unit Vector and Frenet Vectors of a Dual Curve
Keywords:
Dual angle, dual Darboux slant helix, dual helix, dual slant helix, motions of Frenet vectors.Abstract
In this paper, we generalize the notions of helix and slant helix in dual space in a more general case such as the dual angle between a fixed dual unit vector and Frenet vectors of a dual curve is not constant. We study the motions of the lines corresponding to dual Frenet vectors and dual Frenet instantaneous rotation vector with respect to a fixed line. We obtain some characterizations for such dual curves and show that these characterizations include the definitions and characterizations of dual helix and dual slant helix in some special cases.
References
Blaschke, W. (1945). Vorlesungen uber differential geometrie, Bd 1.
Dover Publ., New York.
Bottema, O. & Roth, B. (1979). Theoretical kinematics. North-Holland
Publ. Co. Amsterdam. Pp. 556.
Çöken, A.C., Ekici, C., Kocayusufoğlu, İ. & Görgülü, A. (2009).
Formulas for dual-split quaternionic curves. KJSE- Kuwait Journal of
Science & Engineering,. 36(1A):1-14.
Dimentberg, F.M. (1965). The screw calculus and its application
in mechanics. Izdat, Nauka, Moskow, USSR. English translation:
AD680993, Clearinghouse for Federal and Scientific Technical
Information.
Hacısalihoğlu, H.H. (1983). Hareket geometrisi ve kuaterniyonlar
teorisi. Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Ankara.
Izumiya, S. & Takeuchi, N. (2004). New special curves and developable
surfaces. Turkish Journal of Mathematics, 28:153-163.
Kabadayı, H. & Yaylı, Y. (2011). De Moivre’s formula for dual
quaternions. Kuwait Journal of Science & Engineering, 38(1A):15-23.
Karadağ, H.B., Kılıç, E. & Karadağ, M. (2014). On the developable
ruled surfaces kinematically generated in Minkowski 3-space. Kuwait
Journal of Science, 41(1):21-34.
Lee, J.W., Choi, J.H. & Jin, D.H. (2011). Slant dual Mannheim
partner curves in the dual space. International Journal of Contemporary
Mathematical Sciences, 6(31):1535-1544.
Önder, M. & Uğurlu, H.H. (2013). Normal and spherical curves in
dual space. Mediterranean Journal of Mathematics, 10:1527-1537.
Struik, D.J. (1988). Lectures on classical differential geometry. 2nd ed.
Addison Wesley, Dover.
Veldkamp, G.R. (1976). On the use of dual numbers, vectors and
matrices in instantaneous spatial kinematics. Mechanism and Machine
Theory, 11:141-156.
Yücesan, A., Ayyıldız, N. & Çöken, A.C. (2007). On rectifying dual
space curves. Revista Mathematica Complutense, 20(2):497-506.
Zıplar, E., Şenol, A. & Yaylı, Y. (2012). On Darboux helices in
Euclidean 3-space. Global Journal of Science Frontier Research
Mathematics and Decision Sciences, 12(3):73-80.