Relations between a Dual Unit Vector and Frenet Vectors of a Dual Curve

Authors

  • Burak Şahiner Dept. of Mathematics, Manisa Celal Bayar University, Muradiye, Manisa, 45140, Turkey
  • Mehmet Önder Dept. of Mathematics, Manisa Celal Bayar University, Muradiye, Manisa, 45140, Turkey

Keywords:

Dual angle, dual Darboux slant helix, dual helix, dual slant helix, motions of Frenet vectors.

Abstract

In this paper, we generalize the notions of helix and slant helix in dual space in a more general case such as the dual angle between a fixed dual unit vector and Frenet vectors of a dual curve is not constant. We study the motions of the lines corresponding to dual Frenet vectors and dual Frenet instantaneous rotation vector with respect to a fixed line. We obtain some characterizations for such dual curves and show that these characterizations include the definitions and characterizations of dual helix and dual slant helix in some special cases.

References

Blaschke, W. (1945). Vorlesungen uber differential geometrie, Bd 1.

Dover Publ., New York.

Bottema, O. & Roth, B. (1979). Theoretical kinematics. North-Holland

Publ. Co. Amsterdam. Pp. 556.

Çöken, A.C., Ekici, C., Kocayusufoğlu, İ. & Görgülü, A. (2009).

Formulas for dual-split quaternionic curves. KJSE- Kuwait Journal of

Science & Engineering,. 36(1A):1-14.

Dimentberg, F.M. (1965). The screw calculus and its application

in mechanics. Izdat, Nauka, Moskow, USSR. English translation:

AD680993, Clearinghouse for Federal and Scientific Technical

Information.

Hacısalihoğlu, H.H. (1983). Hareket geometrisi ve kuaterniyonlar

teorisi. Gazi Üniversitesi, Fen-Edebiyat Fakültesi, Ankara.

Izumiya, S. & Takeuchi, N. (2004). New special curves and developable

surfaces. Turkish Journal of Mathematics, 28:153-163.

Kabadayı, H. & Yaylı, Y. (2011). De Moivre’s formula for dual

quaternions. Kuwait Journal of Science & Engineering, 38(1A):15-23.

Karadağ, H.B., Kılıç, E. & Karadağ, M. (2014). On the developable

ruled surfaces kinematically generated in Minkowski 3-space. Kuwait

Journal of Science, 41(1):21-34.

Lee, J.W., Choi, J.H. & Jin, D.H. (2011). Slant dual Mannheim

partner curves in the dual space. International Journal of Contemporary

Mathematical Sciences, 6(31):1535-1544.

Önder, M. & Uğurlu, H.H. (2013). Normal and spherical curves in

dual space. Mediterranean Journal of Mathematics, 10:1527-1537.

Struik, D.J. (1988). Lectures on classical differential geometry. 2nd ed.

Addison Wesley, Dover.

Veldkamp, G.R. (1976). On the use of dual numbers, vectors and

matrices in instantaneous spatial kinematics. Mechanism and Machine

Theory, 11:141-156.

Yücesan, A., Ayyıldız, N. & Çöken, A.C. (2007). On rectifying dual

space curves. Revista Mathematica Complutense, 20(2):497-506.

Zıplar, E., Şenol, A. & Yaylı, Y. (2012). On Darboux helices in

Euclidean 3-space. Global Journal of Science Frontier Research

Mathematics and Decision Sciences, 12(3):73-80.

Downloads

Published

08-08-2016