An optimization problem for some nonlinear elliptic equation
Keywords:
Existence, optimality condition, optimization, tangent cones, uniquenessAbstract
In this paper we prove existence and uniqueness of the optimal solution for anoptimization problem related to a nonlinear elliptic equation. We use the concepttangent cones to derive the optimality condition satisfied by optimal solution.References
Bednarczuk, E., Pierre, M., Rouy, E. & Sokolowski, J. (2000) Tangent sets in some functional spaces.
Nonlinear Analysis Ser. A: Theory Methods, 42(5):871–886.
Brézis, H. & Nirenberg, L. (1983) Positive solutions of nonlinear elliptic equations involving critical
Sobolev exponents. Communication on Pure and Applied Mathematics, 36(4):437–477.
Cominetti, R. & Penot, J.P. (1997) Tangent sets of order one and two to the positive cones of some
functional spaces. Applied Mathematics & Optimization, 36(3):291–312.
Damascelli, L. (1998) Comparison theorems for some quasilinear degenerate elliptic operators and
applications to symmetry and monotonicity results. Annales de l’Institut Henri Poincare (C) Non
Linear Analysis, 15(4):493–516.
Emamizadeh, B. & Zivari-Rezapour, M. (2007) Rearrangement optimization for some elliptic equations.
Journal of Optimization Theory and Applications, 135(3):367–379.
Henrot, A. & Maillot, H. (2001) Optimization of the shape and the location of the actuators in an internal
control problem. Bollettino dell’Unione Matematica Italiana, 4-B(3):737–757.
Henrot, A. & Pierre, M. (2005) Variation et optimisation de formes. Mathématiques et Applications,
(7):334 p.
Hille, E. & Phillips, R.S. (1957) Functional analysis and semi-groups. American Mathematical Society
Colloquium Publications, 31, American Mathematical Society, New York.
Kurata, K., Shibata, M. & Sakamoto, S. (2004) Symmetry-breaking phenomena in an optimaization
problem for some nonlinear elliptic equation. Applied Mathematics & Optimization, 50(3):259–278.
Pao, C.V. (1997) Nonlinear parabolic and elliptic equations. Plenum, New York.