On a local search algorithm for the capacitated max-k-cut problem

Authors

  • JINGLAN WU Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University, Fuzhou 350108, China
  • WENXING ZHU Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University, Fuzhou 350108, China

Keywords:

Approximation ratio, local search, max- -cut problem

Abstract

The local search algorithm for the capacitated max-k -cut problem proposed by GaurĀ  et al. (2008) is not guaranteed to terminate. In this note, we modify the iterative step of their algorithm to make it terminate in a finite number of steps. The modified algorithm is pseudo-polynomial, and in a special case it is strongly polynomial. Moreover, we analyze the worst case bound of the modified algorithm and give some extensions.

References

Ageev, A. A., Hassin, R. Sviridenko, M. I. 2001. A 0.5-approximation algorithm for MAX DICUT with given sizes of parts. SIAM Journal on Discrete Mathematics 14(2): 246-255.

Andersson, G. 1999. An approximation algorithm for max p-Section. Lecture Notes in Computer Science 1563: 237-247, Springer.

Angel, E. 2006. A survey of approximation results for local search algorithms. Lecture Notes in Computer Science 3484: 30-73, Springer.

Avriel, M., Penn, M., Shpirer, N. Witteboon, S. 1998. Stowage planning for container ships to reduce the number of shifts. Annals of Operations Research 76(0): 55-71.

Bollapragada, S. Garbiras, M. 2004. Scheduling commercials on broadcast television. Operations Research 52(3): 337-345.

Brunsch, T., Roglin, H., Rutten, C. Vredeveld, T. 2013. Smoothed performance guarantees for local search. Mathematical Programming, accepted for publication, online at:

http://link.springer.com/article/10.1007 %2Fs10107-013-0683-7#page-1.

Feige, U. Langberg, M. 2001. Approximation algorithms for maximization problems arising in graph partitioning. Journal of Algorithms 41(2): 174-211.

Frieze, A. Jerrum, M. 1997. Improved approximation algorithms for MAX k-CUT and MAX BISECTION. Algorithmica 18(1): 67-81.

Gaur, D. R., Krishnamurti, R. Kohli, R. 2008. The capacitated max- -cut problem. Mathematical Programming 115(1): 65-72.

Gaur, D. R., Krishnamurti, R. Kohli, R. 2011. Erratum to the capacitated max k-cut problem. Mathematical Programming 126(1): 191-191.

Gendreau, M. Potvin, J.-Y. 2005. Metaheuristics in combinatorial optimization. Annals of Operations Research 140(1): 189-213.

Hajirasouliha, I., Hormozdiari, F., Sahinalp, S. C. Birol, I. 2008. Optimal pooling for genome re-sequencing with ultra-high-throughput short-read technologies. Bioinformatics 24: i32-i40.

Johnson, D. S., Papadimitriou, C. H. Yannakakis, M. 1988. How easy is local search? Journal of Computer and System Sciences 37(1): 79-100.

Kann, V., Khanna, S., Lagergren, J. Panconesi, A. 1997. On the hardness of approximating MAX k-CUT and its dual. Chicago Journal of Theoretical Computer Science 2: 1-18.

Orlin, J. B., Punnen, A. P. Schulz, A. S. 2004. Approximate local search in combinatorial optimization. SIAM Journal on Computing 33(5): 1201-1214.

Ye, Y. 2001. A .699-approximation algorithm for Max-Bisection. Mathematical Programming 90(1): 101-111.

Downloads

Published

29-09-2014