Dielectric properties of sintered BaTiO3 prepared from barium acetate and titanium dioxide

Kolthoum Ismail Othman




In this paper, we investigated the densification, microstructure and dielectric properties of BaTiO3 derived from aqueous barium acetate and titanium dioxide mixture in both the unmilled and milled forms. The sintered pellets showed a great difference in the microstructure and dielectric properties between the milled and unmilled ones. The unmilled samples showed broadening in the permittivity peaks at Curie temperature and a higher permittivity value (5630) at room temperature. They exhibit a dielectric relaxor-like behaviour and relatively stable permittivity. This was attributed to the presence of a thin shell layer of barium-rich phase at the grain boundaries. Despite milling gives a better homogeneity, it destroys the shell layer and results in a classic barium titanate dielectric behaviour.


Barium titanate; barium acetate; dielectric properties; sintering & microstructure

Full Text:




Deshpande, S. R., Potdar, H. S., Patil, M. M., Deshpande, V. V. & Khollam, Y. B. (2006). Dielectric properties of BaTiO3 ceramics prepared from powders with bimodal distribution. J. Ind., Eng. Chem., 12(4):584-588.

Ertuğ, B. (2013). The overview of the electrical properties of barium titanate. American Journal of Engineering Research, 02, Issue-08: 01-07.

Kim, H. T. & Han, Y. H. (2004). Sintering of nanocrystalline BaTiO3. Ceramics International, 30:1719-172.

Kittel, C. (1967). Introduction to solid state physics. 3rd Ed Chap.-15: Page 456. John Wiley.

Kong, L. B., Ma, J., Huang, H., Zhang, R. F. & Que, W. X. (2002). Barium titanate derived from mechanochemically activated powders. J. Alloy Compd., 337:226-230.

Li, B., Wang, X. & Li, L.U. (2002). Synthesis and sintering behavior of BaTiO3 prepared by different chemical methods. Materials Chemistry and Physics, 78:292–298.

Li, W., Xu, Z., Chu, R., Fu P., and Hao, J. (2009). Structure and electrical properties of BaTiO3 prepared by sol-gel process. Journal of Alloys and Compounds, 02 (137): 1-18.

Lin, L., Fan, H., Fang, F. & Jim, L. (2007). Electrical heterogeneity in CaCu3Ti4O12 ceramics fabricated by sol-gel method. Solid State Communications, Issue10, 142: 573-576.

Lokare, S. A. (2015). Structural and electrical properties of BaTiO3 prepared by Solid State Route. International Journal of Chemical and Physical Sciences, ISSN: 2319-6602 IJCPS, Special Issue ETP, 4, 154-161.

Luan, W., Gao, L., Kawaoka, H., Sekino, T. & Niihara, K. (2004). Fabrication and characteristics of fine-grained BaTiO3 ceramics by spark plasma sintering. Ceramics International, 30:405–410.

Marković, S., Miljković, M., Jovalekić, C., Mentus, S. & Uskoković. D. (2009). Densification, microstructure and electrical properties of BaTiO3 (BT) ceramics prepared from ultrasonically de-agglomerated BT powders. Materials and Manufacturing Processes, Issue10-11, 24: 1114-1123.

N-Mukherjee, Roseman, R. D. & Zhang, Q. (2002). Sintering behavior and PTCR properties of stoichiometric blend BaTiO3. Journal of physics and chemistry of solids, 63: 631-638.

Othman, K. I., Hassan, A. A., Abdelal, O. A. A., Elshazly, E. S. & Ali M. E-S., et al. (2014). Formation mechanism of barium titanate by solid-state reactions. International Journal of Scientific & Engineering Research, 5, Issue 6: 1460-1465.

Peng, Z. & Chen, Y. (2003). Preparation of BaTiO3 nanoparticles in aqueous solutions. Microelectronic Engineering, 66:102-106.

Raevski, I.P., Prosandeev, S.A., Bogatin, A. S. & Malitskaya, M. A. (2003). High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A=Ba, Sr, Ca and B=Nb,Ta,Sb). Journal of Applied Physics, 93(7): 4130-4136.

Uchino, K. & Nomura, S. (1982). Critical exponents of the dielectric constants in diffused-phase transition crystals. Ferroelectric Letters. Scct., Issue 1, 44:55-61.

Vijatović, M. M., Bobić, J. D. and Stojanović, B. D. (2008). History and Challenges of Barium Titanate: Part I. Science of Sintering. 40:155-165.

Xu, H. & Gao, L. (2004) Hydrothermal synthesis of high-purity BaTiO3 powders: control of powder phase and size, sintering density and dielectric properties. Materials Letters, 58:1582-1586.

Zheng, S. (2016). First-principles calculations of Ca/F co-doped anatase TiO2. Kuwait J. Sci. 43 (2): 162-171.


  • There are currently no refbacks.