On central Boolean rings and Boolean type fuzzy ideals
Keywords:
ring, nearring, Boolean ring, Boolean nearring, fuzzy idealAbstract
In this paper, we introduce the concepts of central Boolean rings and nearrings. We obtain conditions under which central Boolean nearrings are commutative. We study derivations in central Boolean rings and nearrings. Finally, we introduce Boolean type fuzzy ideals of left, right and central Boolean rings and nearrings.References
H. E. Bell and G. Mason (1987) On Derivations in Near-rings, proceeding of Near-rings and Near-Fields, Tubigen, 1985, North Holland Mathematical Studies, 31–35.
S. Bhavanari and S. P. Kuncham(2005) Linearly Independent Elements in N-Groups with Finite Goldie Dimension, Bull. Korean Math. Soc., 42(3), 433-441.
S. Bhavanari and S. P. Kuncham(2013) Nearring, Fuzzy Ideals and Graph Theory, CRC press (UK, USA), ISBN: 9781439873106.
S. Bhavanari (2010) Contributions to Near-rings (VDM Verlag Dr Mullar, Germany, (ISBN: 978-3-639-22417-7).
S. Bhavanari, S. P. Kuncham and B.S. Kedukodi (2010) Graph of a Near-ring with respect to an Ideal, Comm. Algebra, 38, 1957–1962.
S. Bhavanari, L. Godloza, M. Babu Prasad and S. P. Kuncham (2010) Ideals and Direct Products of Zero-square Nearrings, Int. J. Algebra(Croatia), 4, 13–16.
Clay, R. James and Lawyer, A. Donald. (1969) Boolean Near-ring, Canada. Math. Bull., 12, 265–273.
B. Davvaz. (2006) (∈, ∈ ∨q)-fuzzy subnear-rings and ideals., Soft Comput., 10, 206–211.
B. Davvaz and E. H. Sadrabadi(2014) On Atanassov’s intuitionistic fuzzy grade of the direct product of two hypergroupoids, Kuwait J. Sci., 41(3), 47–61.
T. Hisao and Y. Adil (1985) A Generalization of Boolean Rings, Kyungpook Math. J., 25(2), 181–183.
B. Jagadeesha, S.P. Kuncham and B.S. Kedukodi (2016) Implications on a Lattice, Fuzzy Inf. Eng., 8(4), 411–425.
B. Jagadeesha, B.S. Kedukodi, S.P. Kuncham (2016) Interval valued L fuzzy ideals based on t-norms and t-conorms, J Intell Fuzzy Syst, 28(6), 2631–2641.
A. A. M Kamal and K. H. Al-Shaalan (2012) Commutativity of Near-rings with Derivations by using Algebraic Substructures, Indian J. Pure Appl. Math., 43(3), 211–225.
B.S. Kedukodi, S.P. Kuncham and S. Bhavanari (2009) Equiprime, 3-prime and c-prime Fuzzy Ideals of Nearrings, Soft. Comput., 13, 933–944.
B. S. Kedukodi, S. P. Kuncham and S. Bhavanari(2007) C-prime Fuzzy Ideals of Nearrings, Soochow J. Math., 33, 891–901.
B. S. Kedukodi, B. Jagadeesha, S.P. Kuncham and S. Juglal (2017) Different Prime Graphs of a Nearring with respect to an Ideal, 185–203, Editors: S.P. Kuncham, B.S. Kedukodi, H. Panackal and S. Bhavanari, Nearrings, Nearfields and Related Topics, World
Scientific Publisher (Singapore) ISBN 978 - 1 3207 35 - 6 .
B. S. Kedukodi, S. P. Kuncham and S. Bhavanari (2010) Reference pointsand roughness, Inf Sci, 180(17), 3348–3361.
B. S. Kedukodi, S. P. Kuncham and S. Bhavanari (2013) C-Prime fuzzy ideals of Rn[x], Int J Contemp Math Sci, 8(3), 133–137.
B. S. Kedukodi, S. P. Kuncham and B. Jagadeesha (2017) Interval valued L fuzzy prime ideals, triangular norms and partially ordered groups, Soft Comput., https://doi.org/10.1007/s00500-
-2798-x.
K. Koppula, B.S. Kedukodi, S.P. Kuncham (2018) Markov chains and rough sets, Soft. Comput., https://doi.org/10.1007/s00500-018-3298-3.
S.P. Kuncham, Contributions to Near-ring Theory II (Doctoral Dissertation Acharya Nagarjuna University, (2000).
S.P. Kuncham, B. Jagadeesha and B.S. Kedukodi (2016) Interval valued L-fuzzy cosets of nearrings and isomorphism theorems, Afrika Mat., 27(3), 393–408.
S.P. Kuncham, B.S. Kedukodi, H. Panackal and S. Bhavanari (2017) Nearrings, Nearfields and Related Topics (World Scientific (Singapore), ISBN: 978-981-3207-35-6.
B. Lafuerza-Guill´en, H. Panackal(2014) Probabilistic Normed
Spaces, Imperial College Press, World Scientific, UK, London.
X.Ma and J. Zhan (2014) Fuzzy soft Gamma-hemirings, Kuwait J. Sci., 41(2), 15–33.
H. Nayak, S.P. Kuncham and B.S. Kedukodi(2018) Theta Gamma N-group, Mat. Vesnik., 70(1), 64–78.
H. Nayak, S.P. Kuncham and B.S. Kedukodi, Extensions of Boolean Rings and Nearrings,Journal of Siberian Federal University. Mathematics & Physics, (communicated).
G. Pilz(1996) Near-rings and Near-fields (Handbook of Algebra), Edited by M.Hazewinkel, Elsevier Science B.V.
H. Panackal, B. Lafuerza-Guill´en, K. T. Ravindran(2016) Compactness and D− boundedness in Menger’s 2-Probabilistic Normed Spaces, FILO-MAT, 30(5), 1263–1272.
Y. V. Reddy(2017) Recent developments in Boolean Nearrings,Editors: S.P. Kuncham, B.S. Kedukodi, H. Panackal and S. Bhavanari, Nearrings, Nearfields and Related Topics, World
Scientific Publisher (Singapore), ISBN:978-981-3207-35-6.
M. Zulfiqar and M. Shabir (2015) Characterizations of (ǫ, ǫ ∨ q)-interval valued fuzzy H-ideals in BCK-algebras, Kuwait J. Sci., 42(2), 42–62.