On the inverse degree index and decompositions in graphs
Keywords:
Decomposition, inverse degree index, polyethylene graph, topological indicesAbstract
The inverse degree index of a graph $G=(V,E)$ without isolated vertices is defined as $\ID(G)=\sum_{v\in V}\frac{1}{dv}$, where $dv$ is the degree of the vertex $v$ in $G$. In this paper, we show a relation between the inverse degree of a graph and the inverse degree indices of the primary subgraphs obtained by a general decomposition of $G$, we establish some relations between the inverse degree index and other known indices and an application to a specific chemical structure is given.References
textbf{Abdo H., Dimitrov D., Gutman I. (2017) } On extremal trees with respect to the $F-$index. Kuwait Journal of Science, textbf{44} (3): 1-8
textbf{Ali A., Raza Z., Bhatti A. A. (2016) } On the augmented Zagreb index. Kuwait Journal of Science, textbf{43} (2): 48-63
textbf{Dankelmann P., Swart H. C., Van den Berg P. (2008) } Diameter and inverse degree. Discrete Mathematics, textbf{308} (5-6): 670-673
textbf{Dankelmann P., Hellvig A., Volkmann L. (2009) } Inverse degree and edge-connectivity. Discrete Mathematics, textbf{309} (9): 2943-2947
textbf{Das K.C. (2010) } On comparing Zagreb indices of graphs. MATCH Commun. Math. Comput. Chem., textbf{63}: 433-440
textbf{Elumalai S., Hosamani S. M., Mansour T., Rostami M. A. (2018) } More on inverse degree and topological inidices of graphs. Filomat. textbf{32:1}: 165-178
textbf{Fajtlowicz S. (1987) } On conjectures of Graffiti - II . Congr. Numer. textbf{60}: 187-197
textbf{Gutman I. (2013) } Degree-based topological indices. Croatica Chemica Acta textbf{86} (4): 351-361
textbf{Gutman, I., Furtula, B. (eds) (2008) }, Recent Results in the Theory of Randi'c Index, Univ. Kragujevac, Kragujevac
textbf{Harary, F. (1969) }, Graph Theory, Addison-Wesley, Reading, MA, 3
textbf{Hern'andez-G'omez J. C., Rodr'iguez J. M., Sigarreta J. M. (2017) }, On the geometric-arithmetic index by decomposition. J. Math. Chem., textbf{55}: 1376-1391
textbf{Li, X., Gutman, I. (2006) }, Mathematical Aspects of Randi'c Type Molecular Structure Descriptors. Univ. Kragujevac, Kragujevac
textbf{Mansour, T., Schork, M. (2009) }, The PI index of bridge and chain graphs. MATCH Commun. Math. Comput. Chem. textbf{61}: 723-734
textbf{Randi'c, M. (1975) }, On characterization of molecular branching. J. Am. Chem. Soc. textbf{97}: 6609-6615
textbf{Read, R.C., Corneil, D.G. (1977) }, The graph isomorphism disease. J. Graph Theory textbf{1}: 339-363
textbf{Rodr{'i}guez J.A., Sigarreta, J.M. (2005) }, On the Randi'c index and conditional parameters of a graph. MATCH Commun. Math. Comput. Chem. textbf{54}: 403-416.
textbf{Xu K., Das K. Ch., Balachandran S. (2014) }, Maximizing the Zagreb indices of $(n,m)-$graphs. MATCH Communications in Mathematical and in Computer Chemistry, textbf{72}: 641-654
textbf{Xu, K., Das, K.C. (2016) }, Some extremal graphs with respect to inverse degree. Discrete Applied Mathematics, textbf{203}: 171-183