K-MODAL BL-ALGEBRAS
Keywords:
Fuzzy logic, Fuzzy modal logic, K-modal BL-algebra, K-modal filter, □-tautology filter.Abstract
This article will introduce K-modal BL-algebra and investigate some properties ofthis new algebra. Consequently, K-modal filters and □-tautology filters as filters ofK-modal BL-algebras will be dealt with. We will prove that the class of all K-modalBL-algebras is a variety of algebra. Our final goal in this paper is to prove that aK-modal BL-algebra is a sub-algebra of direct product of a system of linearly orderedK-modal BL-algebras under special conditions.
References
Abbasloo, M. & Borumand Saeid, A., (2014) Coatoms and comolecules of BL-algebras, Journal of
intelligent and Fuzzy Systems, 27, No.1, 351-361.
Abramsky, S., Gabbay, D.M. & Maibaum, T.S.E. (eds). (1992) Handbook of logic in computer science,
Clarendon Press-Oxford, 1-3.
Baaz, M. & Hajek, P. (1996). Infinite-valued godel logics with 0-1-projections and relativizations. In
GODEL’96 - Logical foundations of mathematics, computer science and physics; Lecture Notes in
Logic 6, Springer- Verlag, 23-33.
Belohlavek, R. & Vychodil, V. (2005) Fuzzy equational logic, studies in fuzziness and soft computing,
Blackburn. P., De Rijke. M. & Venema, Y. (2001) Modal logic, Cambridge University Press.
Chakraborty. M.K. & Sen. J. (1998) MV-algebras embedded in a CL-algebra, Elsevier, 18, 217-229.
Fitting, M. (1991) Many-valued modal logics, Fundamental Informaticae, 15, 235-54.
Fitting, M. (1992) Many-valued modal logics, II, Fundamental Informaticae, 17, 55-73.
Fitting, M. & Richard, L.M. (1998) First-order Modal Logic, Kluwer Academic Publisher.
Gabbay, D.M., Kurucz, A., Wolter, F. & Zakharyaschev, M. (2003) Many-dimensional modal logics :
Theory and Applications, Elsevier Science B.V., 148.
Gabbay, D.M., Hogger, C.J. & Robinson, J.A. (1994) Handbook of logic in artificial intelligence and
logic programming, Clarendon Press-Oxford, 1-4.
Hajek, P. (1998) Metamathematics of fuzzy logic, Kluwer Academic Publishers, Dordrecht.
Hajek, P. (2010) On fuzzy modal logics S5(C), Fuzzy Sets and System, 161, 2389-2396.
Hughes, G.E. & Cresswell, M.J. (1996) A new introduction to modal logic, Routledge, London and New
York.
Iorgulescu, A. (2008) Algebras of logic as BCK algebras, Bucharest University of Economics, Bucharest,
ROMANIA.
Ko, J.M. & Kim, Y.C. (2004) Closure operators on BL-algebras, Commun. Korean Mathematical Society,
, 219-232.
Kowalski, T. & Ono, H. (2001) Residuated lattices: an algebraic glimpse at logic without contraction.
Ma, X., Zhan, J. & Dudek, W.A. (2009) Some kinds of fuzzy filters of BL-algebras,
Computers & Mathematics with Applications, 58(2):248-256.
Magdalena, H. & Ruchunek, J. (2006) Modal operators on MV-algebras, Mathematical Bohemica, 131:
-48.
Moss, L.S. & Tiede, Hans-Jorg. (2007) Applications of modal logic in Linguistics, Ch. 19 of P.
Blackburn, J. Van Benthem and F. Wolter (eds.), Handbook of Modal Logic, Elsevier, 299-341.
Ono, H. (2005) Proceedings of the 39th MLG meeting at Gamagori, Japan, 36-38.
Piciu, D. (2007) Algebras of fuzzy logic, Ed. Universitaria, Craiova.
Tayebi Khorami, R. & Borumand Saeid, A. (2014) Multiplier in BL-algebras, Iranian Journal of Science
and Technology, 38(A2):95-103.
Pratt Vaughan, R. (1980) Application of modal logic to programming, Studia Logica 39(2-3), 257- 274.
Zhan, J., Jun, Y.B. & Kim, H.S. (2014) Some types of falling fuzzy filtersof BL-algebras and its
applications, Journal of Intelligent and Fuzzy Systems, 26(4):1675-1685.
Zhan, J., Dudek, W.A. & Jun, Y.B. (2009) Interval valued fuzzy filters of pseudo BLalgebras,
Soft Computing, 13(1):13-21.