Cyclic φ -contractions on S-complete Hausdorff uniform Spaces

SHABAN SEDGHI, NABI SHOBKOLAEI

Abstract


In this paper, we apply the concept of cyclic φ -contraction for presenting a fixed point theoremon a Hausdorff uniform space.


Keywords


Comparison function; cyclic φ -contraction; fixed point; S -completeness; uniform spaces.

Full Text:

PDF

References


Aamri, M. & El Moutawakil, D. 2004. Common fixed point theorems for

E-contractive or E-expansive maps in uniform spaces, Acta Mathematica

Academiae Paedagogiace Nyregyháziensis 20: 83-91.

Aamri, M. & El Moutawakil, D. 2005. Weak compatibility and common fixed point

theorems for A-contractive and E-expansive maps in uniform spaces, Serdica

Mathematical Journal 31: 75-86.

Altun, I. 2011. Common fixed point theorems for weakly increasing mappings on

ordered uniform spaces, Miskolc Mathematical Notes 12: 3-10.

Berinde, V. 1997. Contractii Generalizate si Aplicatii, vol. 22, Editura Cub Press,

Baia Mare.

Bourbaki, N. 1998. General topology, Chapters 5-10. Translated from the French.

Reprint of the 1989 English translation. Elements of Mathematics (Berlin).

Springer-Verlag, Berlin.

Montes, J. R. & Charris, J. A. 2001. Fixed points for W-contractive or W-expansive

maps in uniform spaces: toward a unified approach, Southwest Journal of Pure

and Applied Mathematics 1: 93-101.

Shaban Sedghi, Nabi Shobkolaei, Siamak Firouzian and Ishak Altun

Kirk, W. A., Srinivasan, P. S. & Veeramani, P. 2003. Fixed points for mappings

satisfying cyclical weak contractive conditions, Fixed Point Theory 4: 79-89.

Kubiak, T. & Cho, Y. J. 1993. Coincidence points in uniform spaces, International

Journal of Mathematics and Mathematical Sciences 16: 403-404.

Pacurar, M. & Rus, I. A. 2010. Fixed point theory for cyclic ϕ -contractions,

Nonlinear Analysis 72: 1181-1187.

Turkoglu, D. 2010. Some common fixed point theorems for weakly compatible

mappings in uniform spaces, Acta Mathematica Hungarica 128: 165-174.

Wlodarczyk, K. & Plebaniak, R. 2011. A fixed point theorem of Subrahmanyam

type in uniform spaces with generalized pseudo distances, Applied Mathematics

Letters 24: 325-328.

Vályi, I. 1985. A general miximality principle and a fixed point theorem in uniform

spaces, Periodica Mathematica Hungarica 16: 127-134.

Zeidler, E. 1986. Nonlinear functional analysis and its applications I. Fixed-point

theorems, Translated from the German by Peter R. Wadsack. Springer-Verlag,

New York.


Refbacks

  • There are currently no refbacks.