A study on the amplification of active-mirror Yb:YAG lasers
Keywords:
Thermal effect, Lateral ASE, Active-mirror, Energy scalingAbstract
Thermal effects and amplified spontaneous emission (ASE) are two main factors in the design of high-power and high-energy laser amplifiers. The temperature distribution and the lateral ASE of the face-pumped active-mirror Yb:YAG amplifiers are analyzed with finite element analysis software. An amplifier with an output energy of 100 J was designed to illustrate energy scaling of the face-pumped active-mirror structure.
References
Aggarwal, R.L., Ripin, D.J., Ochoa, J.R. & Fan, T.Y.(2005).
Measurement of thermo-optic properties of Y3Al5O12,
Lu3Al5O12,YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and
KY(WO4)2 laser crystals in the 80–300K temperature range,
J. Appl. Phys. 98, 103514
Banerjee, S., Ertel, K., Mason, P.D., et al. (2012). Highefficiency
J diode pumped cryogenic gas cooled Yb:YAG
multislab amplifier, Optics letters, 37(12): 2175-2177
Bruesselbach H.W., Sumida, D.S., Reeder, R.A. et al.
(1997). Low-heat high-power scaling using InGaAs diode
pumped Yb: YAG lasers. IEEE Journal of Selected Topics in
Quantum Electronics, 3(1): 105-116.
Chanteloup, J.C. & Albach. D. (2011). Current status on
high average power and energy diode pumped solid state
lasers. IEEE Photonics Journal, 3(2): 245-248.
Chen, X., Xu, L., Hu, H., et al. (2016). High-efficiency, highaverage-
power, CW Yb: YAG zigzag slab master oscillator
power amplifier at room temperature, Optics Express, 24(21):
-24523.
Cheng, X., Wang, J., Yang, Z., et al. (2015). Generation
of 6.05 J nanosecond pulses at a 1 Hz repetition rate from
a cryogenic cooled diode-pumped Yb: YAG MOPA system.
Proc. SPIE. 9255: 925510
Divoky, M., Smrz, M., Chyla, M., et al. (2014). Overview
of the HiLASE project: high average power pulsed DPSSL
systems for research and industry, High Power Laser Science
and Engineering, 2: e14.
Endo, A., Sikocinski, P., Chyla, M., et al. (2014).
Cryogenically cooled 1 J, ps Yb:YAG slab laser for highbrightness
laser-Compton X-ray source, Proceedings of the
IPAC, Dresden, Germany, 15-20
Fan, T.Y. (1993). Heat generation in Nd: YAG and Yb: YAG.
IEEE Journal of Quantum Electronics, 29(6): 1457-1459
Furuse, H., Sakurai, T., Chosrowjan, H., et al. (2014).
Amplification characteristics of a cryogenic Yb3+:YAG totalreflection
active-mirror laser. Applied optics, 53(9): 1964-
Gonçalvès-Novo, T., Albach, D., Vincent, B., et al. (2013).
J/2 Hz Yb3+: YAG diode pumped solid state laser chain,
Optics express, 21(1): 855-866
Gonçalves-Novo, T., Marrazzo, S., Vincent, B., et al. (2014).
Low temperature active mirror Yb: YAG laser amplifier gain
studies, CLEO: Science and Innovations. Optical Society of
America, SM1F. 2.
Green, J.T., Naylon, J.A., Mazanec, T., et al. (2014). Front
end for ELI-Beamlines’ 100J cryogenically cooled Yb: YAG
multi-slab amplifier with temporal pulse shaping capability,
SPIE LASE. International Society for Optics and Photonics,
X-89590X-6
Hakobyan, S., Wittwer, V.J, Hasse, K., et al. (2016). Highly
efficient Q-switched Yb: YAG channel waveguide laser with
6 W of average output power, Optics Letters, 41(20): 4715-
Koechner, W. (2013). Solid-state laser engineering , Springer
Körner, J., Jambunathan, V., Hein, J., et al. (2014).
Spectroscopic characterization of Yb3+-doped laser materials
at cryogenic temperatures, Applied Physics B, 116(1): 75-81.
Kouznetsov, D., Bisson, J.F. & Ueda, K. (2009), Scaling
laws of disk lasers. Optical materials, 31(5): 754-759.
Marrazzo, S., Gonçalvès-Novo, T., Millet, F., et al. (2016).
Low temperature diode pumped active mirror Yb3+:YAG disk
laser amplifier studies, Optics Express, 24(12): 12651-12660.
Mason, P.D, Ertel, K., Banerjee, S, et al. (2011). Optimised
design for a 1 kJ diode pumped solid state laser system, Proc.
SPIE. , 8080: 80801X.
Nishio, M., Kawato, S., Maruka, A., et al. (2014). High
efficiency laser-diode-pumped continuous-wave Yb:YAG
laser at room temperature, CLEO: Science and Innovations.
Optical Society of America, STu1O. 4
Peterson, P., Gavrielides, A., Newell, T.C, et al. (2011). ASE
in thin disk lasers: theory and experiment, Optics express,
(25): 25672-25684
Sekine, T., Takeuchi, Y., Kurita, T., et al. (2016), High gain,
high efficiency cryogenic Yb: YAG ceramics amplifier for
several hundred joules DPSSL, Advanced Solid State Lasers.
Optical Society of America, ATh4A. 1.
Siebold, M., Loeser, M., Röser, F., et al. (2016). High energy
Yb: YAG active mirror laser system for transform limited
pulses bridging the picosecond gap, Laser & Photonics
Reviews, 10(4): 673-680
Speiser, J. (2009). Scaling of thin-disk lasers-influence of
amplified spontaneous emission. JOSA B, 26(1): 26-35.
Zapata,L.E.,Lin,H.,Calendron, A.L., et al. (2015).
Cryogenic Yb:YAG composite-thin-disk for high energy and
average power amplifiers. Optics letters, 40(11): 2610-2613.
Zhu, G., Zhu, X., Huang, Y., et al. (2014). Numerical
analysis of an end-pumped Yb:YAG thin disk laser with
variation of a fractional thermal load, Applied optics, 53(19):
-4358.