A study on the amplification of active-mirror Yb:YAG lasers

Xiaojin Cheng, Fei Xu, Jianhua Shang, Chao Li

Abstract


Thermal effects and amplified spontaneous emission (ASE) are two main factors in the design of high-power and high-energy laser amplifiers. The temperature distribution and the lateral ASE of the face-pumped active-mirror Yb:YAG amplifiers are analyzed with finite element analysis software. An amplifier with an output energy of 100 J was designed to illustrate energy scaling of the face-pumped active-mirror structure.


Keywords


Thermal effect, Lateral ASE, Active-mirror, Energy scaling

Full Text:

PDF

References


Aggarwal, R.L., Ripin, D.J., Ochoa, J.R. & Fan, T.Y.(2005).

Measurement of thermo-optic properties of Y3Al5O12,

Lu3Al5O12,YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and

KY(WO4)2 laser crystals in the 80–300K temperature range,

J. Appl. Phys. 98, 103514

Banerjee, S., Ertel, K., Mason, P.D., et al. (2012). Highefficiency

J diode pumped cryogenic gas cooled Yb:YAG

multislab amplifier, Optics letters, 37(12): 2175-2177

Bruesselbach H.W., Sumida, D.S., Reeder, R.A. et al.

(1997). Low-heat high-power scaling using InGaAs diode

pumped Yb: YAG lasers. IEEE Journal of Selected Topics in

Quantum Electronics, 3(1): 105-116.

Chanteloup, J.C. & Albach. D. (2011). Current status on

high average power and energy diode pumped solid state

lasers. IEEE Photonics Journal, 3(2): 245-248.

Chen, X., Xu, L., Hu, H., et al. (2016). High-efficiency, highaverage-

power, CW Yb: YAG zigzag slab master oscillator

power amplifier at room temperature, Optics Express, 24(21):

-24523.

Cheng, X., Wang, J., Yang, Z., et al. (2015). Generation

of 6.05 J nanosecond pulses at a 1 Hz repetition rate from

a cryogenic cooled diode-pumped Yb: YAG MOPA system.

Proc. SPIE. 9255: 925510

Divoky, M., Smrz, M., Chyla, M., et al. (2014). Overview

of the HiLASE project: high average power pulsed DPSSL

systems for research and industry, High Power Laser Science

and Engineering, 2: e14.

Endo, A., Sikocinski, P., Chyla, M., et al. (2014).

Cryogenically cooled 1 J, ps Yb:YAG slab laser for highbrightness

laser-Compton X-ray source, Proceedings of the

IPAC, Dresden, Germany, 15-20

Fan, T.Y. (1993). Heat generation in Nd: YAG and Yb: YAG.

IEEE Journal of Quantum Electronics, 29(6): 1457-1459

Furuse, H., Sakurai, T., Chosrowjan, H., et al. (2014).

Amplification characteristics of a cryogenic Yb3+:YAG totalreflection

active-mirror laser. Applied optics, 53(9): 1964-

Gonçalvès-Novo, T., Albach, D., Vincent, B., et al. (2013).

J/2 Hz Yb3+: YAG diode pumped solid state laser chain,

Optics express, 21(1): 855-866

Gonçalves-Novo, T., Marrazzo, S., Vincent, B., et al. (2014).

Low temperature active mirror Yb: YAG laser amplifier gain

studies, CLEO: Science and Innovations. Optical Society of

America, SM1F. 2.

Green, J.T., Naylon, J.A., Mazanec, T., et al. (2014). Front

end for ELI-Beamlines’ 100J cryogenically cooled Yb: YAG

multi-slab amplifier with temporal pulse shaping capability,

SPIE LASE. International Society for Optics and Photonics,

X-89590X-6

Hakobyan, S., Wittwer, V.J, Hasse, K., et al. (2016). Highly

efficient Q-switched Yb: YAG channel waveguide laser with

6 W of average output power, Optics Letters, 41(20): 4715-

Koechner, W. (2013). Solid-state laser engineering , Springer

Körner, J., Jambunathan, V., Hein, J., et al. (2014).

Spectroscopic characterization of Yb3+-doped laser materials

at cryogenic temperatures, Applied Physics B, 116(1): 75-81.

Kouznetsov, D., Bisson, J.F. & Ueda, K. (2009), Scaling

laws of disk lasers. Optical materials, 31(5): 754-759.

Marrazzo, S., Gonçalvès-Novo, T., Millet, F., et al. (2016).

Low temperature diode pumped active mirror Yb3+:YAG disk

laser amplifier studies, Optics Express, 24(12): 12651-12660.

Mason, P.D, Ertel, K., Banerjee, S, et al. (2011). Optimised

design for a 1 kJ diode pumped solid state laser system, Proc.

SPIE. , 8080: 80801X.

Nishio, M., Kawato, S., Maruka, A., et al. (2014). High

efficiency laser-diode-pumped continuous-wave Yb:YAG

laser at room temperature, CLEO: Science and Innovations.

Optical Society of America, STu1O. 4

Peterson, P., Gavrielides, A., Newell, T.C, et al. (2011). ASE

in thin disk lasers: theory and experiment, Optics express,

(25): 25672-25684

Sekine, T., Takeuchi, Y., Kurita, T., et al. (2016), High gain,

high efficiency cryogenic Yb: YAG ceramics amplifier for

several hundred joules DPSSL, Advanced Solid State Lasers.

Optical Society of America, ATh4A. 1.

Siebold, M., Loeser, M., Röser, F., et al. (2016). High energy

Yb: YAG active mirror laser system for transform limited

pulses bridging the picosecond gap, Laser & Photonics

Reviews, 10(4): 673-680

Speiser, J. (2009). Scaling of thin-disk lasers-influence of

amplified spontaneous emission. JOSA B, 26(1): 26-35.

Zapata,L.E.,Lin,H.,Calendron, A.L., et al. (2015).

Cryogenic Yb:YAG composite-thin-disk for high energy and

average power amplifiers. Optics letters, 40(11): 2610-2613.

Zhu, G., Zhu, X., Huang, Y., et al. (2014). Numerical

analysis of an end-pumped Yb:YAG thin disk laser with

variation of a fractional thermal load, Applied optics, 53(19):

-4358.


Refbacks

  • There are currently no refbacks.