Femtosecond laser based deposition of nanoparticles on a thin film and its characterization
Keywords:
Ablation, characterization, deposition, femtosecond laser, nanoparticlesAbstract
Femtosecond laser based deposition of nanoparticles is a promising technique for the formation of homogenous thin films. The introduction provides a literature review related to the techniques for thin film deposition including pulsed-laser deposition (PLD). We then describe the homemade chamber used for PLD with a femtosecond laser. An atomic force microscope (AFM) was used to measure the characteristics of the obtained films. Thickness, roughness and texture of the surface of the films were visualized using this technique. X-ray diffraction and scanning electron microscopy were used to characterize the obtained thin layer of nanoparticle film. The band gap energy of zinc oxide film was determined using UV-VIS characterization,
References
Taabouche, A., Bouabellou, A., Kermiche, F., Hanini, F.,
Menakh, S. et al. (2013). Effect of substrates on the properties
of ZnO thin film grown by Pulsed Laser Deposition. Advances
in Materials Physics and Chemistry, 3: 209-213.
Chrisey, D.B. & Hubler, G.K. (1994). Pulsed Laser
Deposition of Thin Films. John Wiley & Sons, Inc., Pp. 55-81
Christen, H.M., Lee, D.F., List, F.A., Cook, S.W., Leonard,
K.J. et.al. (2005). Pulsed electron deposition of fluorinebased
precursors for YBa2Cu3O7-x-coated conductors.
Superconductor Science and Technology, 18(9): 1168-1175.
Weigand, C.C. (2012). Zinc oxide nanostructures and
thin films grown by Pulsed Laser Deposition. Ph.D. thesis,
Norwegian University of Science and Technology (NTNU),
Trondheim.
Geohegan, D.B. (1994). Diagnostics and characteristics of
laser-produced plasmas. In: Chrisey, D.H. & Hubler, G.K.
(Ed). Pulsed Laser Deposition of Thin Films. John Wiley &
Sons, Inc., New York. Pp.115-162.
Geohegan, D.B. & Puretzky, A.A. (1996). Laser ablation
plume thermalization dynamics in background gases:
Combined imaging, optical absorption and emission
spectroscopy and ion probe measurements. Applied Surface
Science, 131(96-98): 131-138.
Harshavardhan, K.S. & Strikovski, M. (2005). 2nd
Generation HTS Conductors, Ed: Goyal, A., Boston, MA:
Kluwer-Academic, Pp. 108-133.
Schwarz, H. & Tourtellotte, H.A. (1969). Vacuum
deposition by high-energy laser with emphasis on barium
titanate films. Journal of Vacuum Science and Technology,
(3): 373-378.
Höbel, M., Geerk, J., Linker, G. & Schultheiss, C.,
(1990). Deposition of superconducting YBaCuO thin films
by pseudospark ablation. Applied Physics Letters, 56(10):
-975.
Jiang, X.L. & Xu, N. (1989). Preparation of dense films of
crystalline ZrO2 by intense pulsed-electron-beam ablation.
Journal of Applied Physics, 66(11): 5594-5597.
Jahja Kokaj (2011). Characterization of optical and
microscopic properties of ZnO film chemically deposited on
a glass substrate. Kuwait Journal of Science and Engineering,
(2A): 93-106.
Pattar, J., Sawant, S.N. Nagaraja, M., Shashank, N.,
Balakrishna, K.M., et.al. (2009). Structural optical and
electrical properties of vacuum evaporated indium doped zinc
telluride thin films. International Journal of Electrochemical
Science, 4: 369-376.
Kokaj, J. & Rakhshani, A.E. (2004). Photocurrent
spectroscopy of solution-grown CdS films annealed in CdCl2
vapor. Journal of Physics D: Applied Physics, 37(14): 3727-
Lee, H.N., Christen, H.M., Chisholm, M.F., Rouleau, C.M.
& Lowndes, D.H. (2005). Strong polarization enhancement
in asymmetric three-component ferroelectric superlattices.
Nature, 433(7024): 395-399.
Lowndes, D.H., Geohegan, D.B., Puretzky, A.A.,
Norton, D.P. & Rouleau, C.M. (1996). Synthesis of novel
thin-film materials by pulsed laser deposition. Science,
(5277): 898-903.
Metev, S.M. & Veiko, V.P. (1998). Laser-Assisted
Microtechnology. Springer Series in Material Science.
Springer-Verlag Berlin Heidelberg, Pp. 228-244
Rakhshani, A.E., Kokaj, J., Mathew, J. & Preadeep,
B. (2007). Successive chemical solution deposition
of ZnO films on flexible steel substrate: Structure,
photoluminescence and optical transitions. Applied Physics
A: Materials Science & Processing, 86(2): 377-383.
Rakhshani, A.E., Bumajdad, A., Kokaj, J. (2007). ZnO
films grown by successive chemical solution deposition.
Applied Physics A: Materials Science & Processing, 89(4):
-928.
Rakhshani, A.E., Bumajdad, A., Kokaj, J. & Thomas,
S. (2009). Structure, composition and optical properties
of ZnO: Ga films electrodeposited on flexible substrates
Applied Physics A: Materials Science & Processing,
(4):759-764.
Schölch, H.P., Fickenscher, P., Redel, T., Stetter,
M., Saemann-Ischenko, G. et al. (1989). Production of YBa2Cu3O7−x superconducting thin films by pulsed
pseudospark electron beam evaporation. Applied Physics A,
(4): 397-400.
Schlom, D.G., Haeni, J.H., Lettieri, J., Theis, C.D., Tian,
W., et al. (2001). Oxide nano-engineering using MBE.
Materials Science and Engineering: B, 87(3): 282-291.
Sambri, A., Amoruso, S., Wang, X., Radovic, M.,
Granozio, F.M, Bruzzese R. (2007). Substrate heating
influence on plume propagation during pulsed laser
deposition of complex oxides. Applied Physics Letters,
(15): 151501-1515013.
Smith, H.M. & Turner, A.F. (1965). Vacuum deposited thin
films using a ruby laser. Applied Optics, 4(1): 147-148.
Sivanandan, S.H., Freeman, J.R., Diwakar, J.R. &
Hassanein, A. (2014). Femtosecond Laser Ablation:
Fundamentals and Applications; Laser-Induced Breakdown
Spectroscopy; Springer Series in Optical Sciences, 182:
-166.
Tan, S.T., Chen, B.J., Sun, X.W., & Fan, W.J. (2005).
Blueshift of optical band gap in ZnO thin films grown
by metal-organic chemical-vapor deposition. Journal of
Applied Physics, 98(1): 013505-013505-5.
Warusawithana, M.P., Colla, E.V., Eckstein, J.N. &
Weissman, M.B. (2003). Artificial dielectric superlattices
with broken inversion symmetry. Physical Review Letters,
(3): 036802-036806
Willmott, P.R., & Huber, J.R. (2000). Pulsed laser
vaporization and deposition. Reviews of Modern Physics,
(1): 315-328.
Willmott, P.R. (2004) Deposition of complex multielemental
thin films. Progress in Surface Science, 76(6-8):
-217.
Yamada, H., Kawasaki, M., Ogawa, Y., Tokura, Y. (2002).
Perovskite oxide tricolor superlattices with artificially
broken inversion symmetry by interface effects. Applied
Physics Letters, 81(25): 4793-4795.