Femtosecond laser based deposition of nanoparticles on a thin film and its characterization

Jahja Kokaj, Ali Shuaib, Yacoub Makdisi, Remya Nair, Joseph Mathew

Abstract


Femtosecond laser based deposition of nanoparticles is a promising technique for the formation of homogenous thin films. The introduction provides a literature review related to the techniques for thin film deposition including pulsed-laser deposition (PLD). We then describe the homemade chamber used for PLD with a femtosecond laser. An atomic force microscope (AFM) was used to measure the characteristics of the obtained films. Thickness, roughness and texture of the surface of the films were visualized using this technique. X-ray diffraction and scanning electron microscopy were used to characterize the obtained thin layer of nanoparticle film. The band gap energy of zinc oxide film was determined using UV-VIS characterization,


Keywords


Ablation; characterization; deposition; femtosecond laser; nanoparticles

Full Text:

PDF

References


Taabouche, A., Bouabellou, A., Kermiche, F., Hanini, F.,

Menakh, S. et al. (2013). Effect of substrates on the properties

of ZnO thin film grown by Pulsed Laser Deposition. Advances

in Materials Physics and Chemistry, 3: 209-213.

Chrisey, D.B. & Hubler, G.K. (1994). Pulsed Laser

Deposition of Thin Films. John Wiley & Sons, Inc., Pp. 55-81

Christen, H.M., Lee, D.F., List, F.A., Cook, S.W., Leonard,

K.J. et.al. (2005). Pulsed electron deposition of fluorinebased

precursors for YBa2Cu3O7-x-coated conductors.

Superconductor Science and Technology, 18(9): 1168-1175.

Weigand, C.C. (2012). Zinc oxide nanostructures and

thin films grown by Pulsed Laser Deposition. Ph.D. thesis,

Norwegian University of Science and Technology (NTNU),

Trondheim.

Geohegan, D.B. (1994). Diagnostics and characteristics of

laser-produced plasmas. In: Chrisey, D.H. & Hubler, G.K.

(Ed). Pulsed Laser Deposition of Thin Films. John Wiley &

Sons, Inc., New York. Pp.115-162.

Geohegan, D.B. & Puretzky, A.A. (1996). Laser ablation

plume thermalization dynamics in background gases:

Combined imaging, optical absorption and emission

spectroscopy and ion probe measurements. Applied Surface

Science, 131(96-98): 131-138.

Harshavardhan, K.S. & Strikovski, M. (2005). 2nd

Generation HTS Conductors, Ed: Goyal, A., Boston, MA:

Kluwer-Academic, Pp. 108-133.

Schwarz, H. & Tourtellotte, H.A. (1969). Vacuum

deposition by high-energy laser with emphasis on barium

titanate films. Journal of Vacuum Science and Technology,

(3): 373-378.

Höbel, M., Geerk, J., Linker, G. & Schultheiss, C.,

(1990). Deposition of superconducting YBaCuO thin films

by pseudospark ablation. Applied Physics Letters, 56(10):

-975.

Jiang, X.L. & Xu, N. (1989). Preparation of dense films of

crystalline ZrO2 by intense pulsed-electron-beam ablation.

Journal of Applied Physics, 66(11): 5594-5597.

Jahja Kokaj (2011). Characterization of optical and

microscopic properties of ZnO film chemically deposited on

a glass substrate. Kuwait Journal of Science and Engineering,

(2A): 93-106.

Pattar, J., Sawant, S.N. Nagaraja, M., Shashank, N.,

Balakrishna, K.M., et.al. (2009). Structural optical and

electrical properties of vacuum evaporated indium doped zinc

telluride thin films. International Journal of Electrochemical

Science, 4: 369-376.

Kokaj, J. & Rakhshani, A.E. (2004). Photocurrent

spectroscopy of solution-grown CdS films annealed in CdCl2

vapor. Journal of Physics D: Applied Physics, 37(14): 3727-

Lee, H.N., Christen, H.M., Chisholm, M.F., Rouleau, C.M.

& Lowndes, D.H. (2005). Strong polarization enhancement

in asymmetric three-component ferroelectric superlattices.

Nature, 433(7024): 395-399.

Lowndes, D.H., Geohegan, D.B., Puretzky, A.A.,

Norton, D.P. & Rouleau, C.M. (1996). Synthesis of novel

thin-film materials by pulsed laser deposition. Science,

(5277): 898-903.

Metev, S.M. & Veiko, V.P. (1998). Laser-Assisted

Microtechnology. Springer Series in Material Science.

Springer-Verlag Berlin Heidelberg, Pp. 228-244

Rakhshani, A.E., Kokaj, J., Mathew, J. & Preadeep,

B. (2007). Successive chemical solution deposition

of ZnO films on flexible steel substrate: Structure,

photoluminescence and optical transitions. Applied Physics

A: Materials Science & Processing, 86(2): 377-383.

Rakhshani, A.E., Bumajdad, A., Kokaj, J. (2007). ZnO

films grown by successive chemical solution deposition.

Applied Physics A: Materials Science & Processing, 89(4):

-928.

Rakhshani, A.E., Bumajdad, A., Kokaj, J. & Thomas,

S. (2009). Structure, composition and optical properties

of ZnO: Ga films electrodeposited on flexible substrates

Applied Physics A: Materials Science & Processing,

(4):759-764.

Schölch, H.P., Fickenscher, P., Redel, T., Stetter,

M., Saemann-Ischenko, G. et al. (1989). Production of YBa2Cu3O7−x superconducting thin films by pulsed

pseudospark electron beam evaporation. Applied Physics A,

(4): 397-400.

Schlom, D.G., Haeni, J.H., Lettieri, J., Theis, C.D., Tian,

W., et al. (2001). Oxide nano-engineering using MBE.

Materials Science and Engineering: B, 87(3): 282-291.

Sambri, A., Amoruso, S., Wang, X., Radovic, M.,

Granozio, F.M, Bruzzese R. (2007). Substrate heating

influence on plume propagation during pulsed laser

deposition of complex oxides. Applied Physics Letters,

(15): 151501-1515013.

Smith, H.M. & Turner, A.F. (1965). Vacuum deposited thin

films using a ruby laser. Applied Optics, 4(1): 147-148.

Sivanandan, S.H., Freeman, J.R., Diwakar, J.R. &

Hassanein, A. (2014). Femtosecond Laser Ablation:

Fundamentals and Applications; Laser-Induced Breakdown

Spectroscopy; Springer Series in Optical Sciences, 182:

-166.

Tan, S.T., Chen, B.J., Sun, X.W., & Fan, W.J. (2005).

Blueshift of optical band gap in ZnO thin films grown

by metal-organic chemical-vapor deposition. Journal of

Applied Physics, 98(1): 013505-013505-5.

Warusawithana, M.P., Colla, E.V., Eckstein, J.N. &

Weissman, M.B. (2003). Artificial dielectric superlattices

with broken inversion symmetry. Physical Review Letters,

(3): 036802-036806

Willmott, P.R., & Huber, J.R. (2000). Pulsed laser

vaporization and deposition. Reviews of Modern Physics,

(1): 315-328.

Willmott, P.R. (2004) Deposition of complex multielemental

thin films. Progress in Surface Science, 76(6-8):

-217.

Yamada, H., Kawasaki, M., Ogawa, Y., Tokura, Y. (2002).

Perovskite oxide tricolor superlattices with artificially

broken inversion symmetry by interface effects. Applied

Physics Letters, 81(25): 4793-4795.


Refbacks

  • There are currently no refbacks.