Can an axion be the dark energy particle?
Keywords:
axions, dark energy particle, dark energy density, "old" cosmological problemAbstract
Following a phenomenological analysis done by the late Martin Perl for the detection of the dark energy, we show that an axion of energy $1.5\times 10^{-3}~eV/c^2$ can be a viable candidate for the dark energy particle. In particular, we obtain the characteristic length and frequency of the axion as a quantum particle. Then, employing a relation that connects the energy density with the frequency of a particle, i.e., $\rho\sim f^{4}$, we show that the energy density of axions, with the aforesaid value of mass, as obtained from our theoretical analysis is proportional to the dark energy density computed on observational data, i.e., $\rho_{a}/\rho_{DE}\sim \mathcal{O}(1)$.
References
Ade, P.A.R., et al. [PLANCK Collaboration] (2016).
Planck 2015 results. XIII. Cosmological parameters. Astron.
Astrophys. 594: A13. doi:10.1051 /0004 -6361201525830/.
Anastassopoulos, V., et al. [TASTE Collaboration] (2017).
Towards a medium-scale axion helioscope and haloscope.
JINST 12 (11): P11019. doi:10.1088 /1748- 0221 /12 /11/
P11019.
Borsanyi, S., et al. (2016). Calculation of the axion mass
based on high-temperature lattice quantum chromodynamics.
Nature 539 (7627): 69 -71.
Burgess, C.P. (2015). The Cosmological Constant Problem:
Why it's hard to get Dark Energy fromMicro-physics.
doi:10.1093/acprof:oso/9780198728856.003.0004.
Della Valle, F., et al. (2016). The PVLAS experiment:
measuring vacuum magnetic birefringence and dichroism
with a birefringent Fabry-Perot cavity. Eur. Phys. J. C 76 (1):
doi:10.1140/epjc/s10052 -015 - 3869- 8.
Peccei, R.D. & Quinn, H.R. (1977). CP Conservation in
the Presence of Instantons. Phys. Rev. Lett. 38: 1440- 1443.
doi:10.1103/PhysRevLett.38.1440.
Perl, M.L. (2009). Can the Existence of Dark Energy Be
Directly Detected? Int. J. Mod. Phys. A 24: 3426- 3436.
doi:10.1142/S0217751X09047028.
Ringwald, A. (2016). Alternative dark matter candidates:
Axions. PoS NOW2016 283: 081. doi:10.223231.283.0081/.