Determination of imatinib mesylate and erlotinib hydrochloride in mice plasma using ultrahigh performance liquid chromatography method

Authors

  • Gülen Melike Demir Gazi University Faculty of Pharmacy, Department of Pharmaceutical Technology, Etiler, Ankara, Turkey
  • İsmail Tuncer Degim Biruni University, Faculty of Pharmacy, Department of Pharmaceutical Technology Topkapi, Istanbul TURKEY

Keywords:

Erlotinib, Imatinib mesylate, UPLC, plasma

Abstract

This study aimed to develop a rapid, user-friendly, economic and sensitive method for analyzing imatinib mesylate (IMA) and erlotinib hydrocloride (ERLO) in mice plasma using ultrahigh performance liquid chromatography (UPLC). Separation was achieved by isocratic elution using a mobile phase consisting of the mixture of 3mM triethylamine and acetonitrile with the ratio of 60:40 using XTerra® RP8 column (5 μm 4.6x150 mm). The retention time for IMA was 4.9 minutes with a flow rate of 1.5mL/min, while the retention time for ERLO was 5.0 minutes with a flow rate of 0.8mL/min. Injection volume was set to 20μL and the detector wavelength was 320 nm. Detection limits for imatinib mesylate and erlotinib hydrochloride were 95 and 72 ng/mL, respectively. This method was validated in terms of linearity, selectivity, recovery, precision and accuracy. This simple and sensitive method can be successfully used in research and easily adapted for analyses of other types of tyrosine kinases receptor inhibitors.

References

Annapurna, M.M., Venkatesh, B. & Chaitanya, R.K.

(2014). Analytical techniques for the determination of erlotinib

HCl in pharmaceutical dosage forms by spectrophotometry.

Chemical Science Transactions, 3(2): 840- 846.

Arora, A. & Scholar EM. (2005). Role of tyrosine kinase

inhibitors in cancer therapy. The Journal of Pharmacology

and Experımental Therapeutics, 315(3): 971–979.

Bennasroune, A., Gardin, A., Aunis, D., Crémel, G. &

Hubert, P. (2004). Tyrosine kinase receptors as attractive

targets of cancer therapy. Critical Reviews in Oncology/

Hematology, 50(1): 23–38.

Blume-Jensen, P. & Hunter, T. (2001). Oncogenic kinase

signaling. Nature, 411: 355- 365.

Degim, I.T. & Kadioglu, D. (2013). Cheap, suitable,

predictable and manageable nanoparticles for drug delivery:

quantum dots. Current Drug Delivery, 10(1): 32- 38.

Gao, Y., Xie, J., Chen, H., Gu, S., Zhao, R., Shao, J. & Jia,

L. (2014). Nanotechnology-based intelligent drug design

for cancer metastasis treatment. Biotechnology Advances,

(4): 761–777.

Golabchifar, A.A., Rouini, M.R., Shafaghi, B., Rezaee, S.,

Foroumadi, A. & Khoshayand, M.R. (2011). Optimization

of the simultaneous determination of imatinib and its major

metabolite, CGP74588, in human plasma by a rapid HPLC

method using D-optimal experimental design. Talanta,

(5): 2320–2329.

Gschwind, A., Fischer, O.M. & Ullrich, A. (2004). The

discovery of receptor tyrosine kinases: targets for cancer

therapy. Nature Reviews Cancer, 4: 361- 370.

Hartmann, J.T., Haap, M., Kopp, H,G. & Lipp,

H.P. (2009). Tyrosine kinase inhibitors–A review on

pharmacology, metabolism and side effects. Current Drug

Metabolism, 10(5): 470- 481.

Hiltona, J.F., Tu, D. & Seymour L., Shepherd, F.A.,

Bradbury P.A. (2013). An evaluation of the possible

interaction of gastric acid suppressing medication and the

EGFR tyrosine kinase inhibitor erlotinib. Lung Cancer,

(1): 136–142.

Hubbard, S.R. & Miller, W.T. (2007). Receptor tyrosine

kinases: Mechanisms of activation and signaling. Current

Opinion in Cell Biology, 19(2): 117–123.

Ilbasmis, S. & Degim, I.T. (2012). A feasible way to use

carbon nanotubes to deliver drug molecules: transdermal

application. Expert Opinion on Drug Delivery, 9(8): 991 -99.

Ilbasmis-Tamer, S., Yilmaz, S., Banoglu, E. & Degim,

I.T. (2010). Carbon nanotubes to deliver drug molecules. J

Biomed Nanotechnol., 6(1): 20 -27.

Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray,

T. & Thun, M.J. (2008). Cancer statistics, 2008. CA Cancer

J. Clin., 58(2): 71–96.

Kralj, E., Trontelj, J., Pajiˇc, T. & Kristl, A. (2012).

Simultaneous measurement of imatinib, nilotinib and

dasatinib in dried blood spot by ultra high performance

liquid chromatography tandem mass spectrometry. Journal

of Chromatography B, 903: 150– 156.

Kumar, J., Sundar, V.D., Magesh, Kumar., A.R.S.N. &

Dhanaraju, M.D. (2010). Validated spectrophotometric

estimation of imatinib mesylate in pure and tablet dosage

form. International Journal of Pharmacy & Technology,

(3): 490- 495.

Latha, S.T., Thangadurai, S.A., Jambulingam, M.,

Sereya, K., Kamalakannan, D. & Anilkumar, M. (2013).

Development and validation of RP-HPLC method for the

estimation of erlotinib in pharmaceutical formulation.

Arabian Journal of Chemistry, 10: S11381144-.

Lobo, N.A., Shimono, Y., Qian, D. & Clarke, M.F. (2007).

The biology of cancer stem cells. Annu. Rev.Cell Dev. Biol.,

: 675699-.

Madhusudan, S. & Ganesan, T.S. (2004). Tyrosine kinase

inhibitors in cancer therapy Clinical Biochemistry, 37: 618–635.

Manley, P.W., Stiefl, N., Cowan-Jacob, S.W., Kaufman,

S., Mestan, J., Wartmann M., Wiesmann M., Woodman,

R. & Gallagher, N. (2010). Structural resemblances and

comparisons of the relative pharmacological properties of

imatinib and nilotinib, Bioorganic & Medicinal Chemistry,

(19): 6977–6986.

Marczylo, T.H., Steward, W.P. & Gescher, A.J. (2009).

Rapid analysis of curcumin and curcumin metabolites

in rat biomatrices using a novel ultraperformance liquid

chromatography (UPLC) method. J. Agric. Food Chem.,

(3): 797–580.

Mutlu Ağardan, N.B., Değim, Z., Yılmaz, Ş., Altıntaş, L.

& Topal, T. (2016). The effectiveness of raloxifene-loaded

liposomes and cochleates in breast cancer therapy. AAPS

PharmSciTech., 17(4): 968–977.

Nageswaria, A., Krishna, Reddy, K.V.S.R. & Mukkanti, K.

(2012). Stability-indicating UPLC method for determination

of imatinib mesylate and their degradation products in

active pharmaceutical ingredient and pharmaceutical dosage

forms. Journal of Pharmaceutical and Biomedical Analysis,

: 109–115.

National Center for Biotechnology Information. (2018).

PubChem Compound Database; CID=123596, https://

pubchem.ncbi.nlm.nih.gov/compound/123596 (accessed

Apr. 15, 2018).

National Center for Biotechnology Information. (2018).

PubChem Compound Database; CID=176871, https://

pubchem.ncbi.nlm.nih.gov/compound/176871 (accessed

Apr. 15, 2018).

Neville, K., Parise, R.A., Thompson, P., Aleksic, A.,

Egorin, M.J., Balis, F.M., McGuffey, L., McCully, C.,

Berg, S.L. & Blaney SM. (2004). Plasma and cerebrospinal

fluid pharmacokinetics of imatinib after administration

to nonhuman primates. Clinical Cancer Research, 10(7):

–2529.

Paul, M.K. & Mukhopadhyay, A.K. (2004).Tyrosine

kinase–Role and significance in cancer. Int. J. Med. Sci.,

(2): 101- 115.

Payne, S. and Miles, D. (2008). Chapter 4: Mechanisms of

anticancer drugs. Scott-Brown's Otorhinolaryngology, vol.

, Taylor & Francis: FL, pp. 34–46.

Smolle, E., Taucher, V., Petru, E. & Haybaeck, J. (2014).

Targeted treatment of ovarian cancer-The multiple-kinaseinhibitor

sorafenib as a potential option. Anticancer Research

(4): 1519- 1530.

World Health Organization. (2018). Cancer. World Health

Organization, Feb. 2018. http://www.who.int/mediacentre/

factsheets/fs297/en/.

Zwolak, P., Jasinski, P., Terai, K., Gallus, N.J., Ericson,

M.E., Clohisy, D.R. & Dudek, A.Z. (2008). Addition of

receptor tyrosine kinase inhibitor to radiation increases

tumor control in an orthotopic murine model of breast cancer

metastasis in bone. European Journal of Cancer 44(16):

–2517.

Downloads

Published

28-08-2018