Determination of imatinib mesylate and erlotinib hydrochloride in mice plasma using ultrahigh performance liquid chromatography method
Keywords:
Erlotinib, Imatinib mesylate, UPLC, plasmaAbstract
This study aimed to develop a rapid, user-friendly, economic and sensitive method for analyzing imatinib mesylate (IMA) and erlotinib hydrocloride (ERLO) in mice plasma using ultrahigh performance liquid chromatography (UPLC). Separation was achieved by isocratic elution using a mobile phase consisting of the mixture of 3mM triethylamine and acetonitrile with the ratio of 60:40 using XTerra® RP8 column (5 μm 4.6x150 mm). The retention time for IMA was 4.9 minutes with a flow rate of 1.5mL/min, while the retention time for ERLO was 5.0 minutes with a flow rate of 0.8mL/min. Injection volume was set to 20μL and the detector wavelength was 320 nm. Detection limits for imatinib mesylate and erlotinib hydrochloride were 95 and 72 ng/mL, respectively. This method was validated in terms of linearity, selectivity, recovery, precision and accuracy. This simple and sensitive method can be successfully used in research and easily adapted for analyses of other types of tyrosine kinases receptor inhibitors.
References
Annapurna, M.M., Venkatesh, B. & Chaitanya, R.K.
(2014). Analytical techniques for the determination of erlotinib
HCl in pharmaceutical dosage forms by spectrophotometry.
Chemical Science Transactions, 3(2): 840- 846.
Arora, A. & Scholar EM. (2005). Role of tyrosine kinase
inhibitors in cancer therapy. The Journal of Pharmacology
and Experımental Therapeutics, 315(3): 971–979.
Bennasroune, A., Gardin, A., Aunis, D., Crémel, G. &
Hubert, P. (2004). Tyrosine kinase receptors as attractive
targets of cancer therapy. Critical Reviews in Oncology/
Hematology, 50(1): 23–38.
Blume-Jensen, P. & Hunter, T. (2001). Oncogenic kinase
signaling. Nature, 411: 355- 365.
Degim, I.T. & Kadioglu, D. (2013). Cheap, suitable,
predictable and manageable nanoparticles for drug delivery:
quantum dots. Current Drug Delivery, 10(1): 32- 38.
Gao, Y., Xie, J., Chen, H., Gu, S., Zhao, R., Shao, J. & Jia,
L. (2014). Nanotechnology-based intelligent drug design
for cancer metastasis treatment. Biotechnology Advances,
(4): 761–777.
Golabchifar, A.A., Rouini, M.R., Shafaghi, B., Rezaee, S.,
Foroumadi, A. & Khoshayand, M.R. (2011). Optimization
of the simultaneous determination of imatinib and its major
metabolite, CGP74588, in human plasma by a rapid HPLC
method using D-optimal experimental design. Talanta,
(5): 2320–2329.
Gschwind, A., Fischer, O.M. & Ullrich, A. (2004). The
discovery of receptor tyrosine kinases: targets for cancer
therapy. Nature Reviews Cancer, 4: 361- 370.
Hartmann, J.T., Haap, M., Kopp, H,G. & Lipp,
H.P. (2009). Tyrosine kinase inhibitors–A review on
pharmacology, metabolism and side effects. Current Drug
Metabolism, 10(5): 470- 481.
Hiltona, J.F., Tu, D. & Seymour L., Shepherd, F.A.,
Bradbury P.A. (2013). An evaluation of the possible
interaction of gastric acid suppressing medication and the
EGFR tyrosine kinase inhibitor erlotinib. Lung Cancer,
(1): 136–142.
Hubbard, S.R. & Miller, W.T. (2007). Receptor tyrosine
kinases: Mechanisms of activation and signaling. Current
Opinion in Cell Biology, 19(2): 117–123.
Ilbasmis, S. & Degim, I.T. (2012). A feasible way to use
carbon nanotubes to deliver drug molecules: transdermal
application. Expert Opinion on Drug Delivery, 9(8): 991 -99.
Ilbasmis-Tamer, S., Yilmaz, S., Banoglu, E. & Degim,
I.T. (2010). Carbon nanotubes to deliver drug molecules. J
Biomed Nanotechnol., 6(1): 20 -27.
Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray,
T. & Thun, M.J. (2008). Cancer statistics, 2008. CA Cancer
J. Clin., 58(2): 71–96.
Kralj, E., Trontelj, J., Pajiˇc, T. & Kristl, A. (2012).
Simultaneous measurement of imatinib, nilotinib and
dasatinib in dried blood spot by ultra high performance
liquid chromatography tandem mass spectrometry. Journal
of Chromatography B, 903: 150– 156.
Kumar, J., Sundar, V.D., Magesh, Kumar., A.R.S.N. &
Dhanaraju, M.D. (2010). Validated spectrophotometric
estimation of imatinib mesylate in pure and tablet dosage
form. International Journal of Pharmacy & Technology,
(3): 490- 495.
Latha, S.T., Thangadurai, S.A., Jambulingam, M.,
Sereya, K., Kamalakannan, D. & Anilkumar, M. (2013).
Development and validation of RP-HPLC method for the
estimation of erlotinib in pharmaceutical formulation.
Arabian Journal of Chemistry, 10: S11381144-.
Lobo, N.A., Shimono, Y., Qian, D. & Clarke, M.F. (2007).
The biology of cancer stem cells. Annu. Rev.Cell Dev. Biol.,
: 675699-.
Madhusudan, S. & Ganesan, T.S. (2004). Tyrosine kinase
inhibitors in cancer therapy Clinical Biochemistry, 37: 618–635.
Manley, P.W., Stiefl, N., Cowan-Jacob, S.W., Kaufman,
S., Mestan, J., Wartmann M., Wiesmann M., Woodman,
R. & Gallagher, N. (2010). Structural resemblances and
comparisons of the relative pharmacological properties of
imatinib and nilotinib, Bioorganic & Medicinal Chemistry,
(19): 6977–6986.
Marczylo, T.H., Steward, W.P. & Gescher, A.J. (2009).
Rapid analysis of curcumin and curcumin metabolites
in rat biomatrices using a novel ultraperformance liquid
chromatography (UPLC) method. J. Agric. Food Chem.,
(3): 797–580.
Mutlu Ağardan, N.B., Değim, Z., Yılmaz, Ş., Altıntaş, L.
& Topal, T. (2016). The effectiveness of raloxifene-loaded
liposomes and cochleates in breast cancer therapy. AAPS
PharmSciTech., 17(4): 968–977.
Nageswaria, A., Krishna, Reddy, K.V.S.R. & Mukkanti, K.
(2012). Stability-indicating UPLC method for determination
of imatinib mesylate and their degradation products in
active pharmaceutical ingredient and pharmaceutical dosage
forms. Journal of Pharmaceutical and Biomedical Analysis,
: 109–115.
National Center for Biotechnology Information. (2018).
PubChem Compound Database; CID=123596, https://
pubchem.ncbi.nlm.nih.gov/compound/123596 (accessed
Apr. 15, 2018).
National Center for Biotechnology Information. (2018).
PubChem Compound Database; CID=176871, https://
pubchem.ncbi.nlm.nih.gov/compound/176871 (accessed
Apr. 15, 2018).
Neville, K., Parise, R.A., Thompson, P., Aleksic, A.,
Egorin, M.J., Balis, F.M., McGuffey, L., McCully, C.,
Berg, S.L. & Blaney SM. (2004). Plasma and cerebrospinal
fluid pharmacokinetics of imatinib after administration
to nonhuman primates. Clinical Cancer Research, 10(7):
–2529.
Paul, M.K. & Mukhopadhyay, A.K. (2004).Tyrosine
kinase–Role and significance in cancer. Int. J. Med. Sci.,
(2): 101- 115.
Payne, S. and Miles, D. (2008). Chapter 4: Mechanisms of
anticancer drugs. Scott-Brown's Otorhinolaryngology, vol.
, Taylor & Francis: FL, pp. 34–46.
Smolle, E., Taucher, V., Petru, E. & Haybaeck, J. (2014).
Targeted treatment of ovarian cancer-The multiple-kinaseinhibitor
sorafenib as a potential option. Anticancer Research
(4): 1519- 1530.
World Health Organization. (2018). Cancer. World Health
Organization, Feb. 2018. http://www.who.int/mediacentre/
factsheets/fs297/en/.
Zwolak, P., Jasinski, P., Terai, K., Gallus, N.J., Ericson,
M.E., Clohisy, D.R. & Dudek, A.Z. (2008). Addition of
receptor tyrosine kinase inhibitor to radiation increases
tumor control in an orthotopic murine model of breast cancer
metastasis in bone. European Journal of Cancer 44(16):
–2517.