Generalized Bertrand curves with timelike (1,3)-normal plane in Minkowski space-time

Authors

  • ALİ UCUM Department of Mathematics, Faculty of Arts and Sciences, Kırıkkale University, 71450 Yahsihan, Kırıkkale, TURKEY
  • OSMAN KEÇİLİOĞLU Department of Statistics, Faculty of Sciences and Arts, Kırıkkale University, 71450 Yahsihan, Kırıkkale, TURKEY
  • KAZIM İLARSLAN Department of Mathematics, Faculty of Arts and Sciences, Kırıkkale University, 71450 Yahsihan, Kırıkkale, TURKEY

Keywords:

Bertrand curve, Minkowski space-time, Frenet planes.

Abstract

In this paper, we reconsider the (1,3)-Bertrand curves with respect to the casualcharacters of (1,3)-normal plane which is a plane spanned by the principal normal andthe second binormal vector fields of the given curve. Here, we restrict our investigationof (1,3)-Bertrand curves to the timelike (1,3)-normal plane in Minkowski spacetime.We obtain the necessary and sufficient conditions for the curves with timelike(1,3)-normal plane to be (1,3)-Bertrand curves and we give the related examples forthese curves.

References

Balgetir, H., Bektaş, M. & Ergüt, M. 2004. Bertrand curves for non-null curves in 3-dimensional

Lorentzian space, Hadronic Journal 27 (2): 229-236.

Balgetir, H., Bektaş, M. & Inoguchi, J. 2004/05. Null Bertrand curves in Minkowski 3-space and their

characterizations, Note di Matematica 23 (1): 7-13.

Bertrand, J. M. 1850. Mémoire sur la théorie des courbes á double courbure. Comptes Rendus. Pp. 36.

Bioche, Ch. 1889. Sur les courbes de M. Bertrand, Bulletin de la Société Mathématique de France 17:

-112.

Bonnor, W. B. 1969. Null curves in a Minkowski space-time, Tensor 20: 229-242.

Bonnor, W. B. 1985. Curves with null normals in Minkowski space-time. A random walk in relativity and

cosmology, Wiley Easten Limited: 33-47.

Burke, J. F. 1960. Bertrand Curves Associated with a Pair of Curves, Mathematics Magazine 34 (1):

-62.

Ekmekci, N. & İlarslan, K. 2001. On Bertrand curves and their characterization, Differential Geometry

- Dynamical Systems 3 (2): 17-24.

Ersoy, S. & İnalcik, A. 2014. Generalized spacelike Bertrand curves in Minkowski 5-space, Quaestiones

Mathematicae 37 (1): 19-29.

Gök, İ., Nurkan, S. K. & İlarslan, K. 2014. On Pseudo Null Bertrand Curves in Minkowski Space-Time,

Kyungpook Mathematical Journal 54(4): 685-697

Jin, D. H. 2008. Null Bertrand curves in a Lorentz manifold, Journal of the Korean Society of Mathematical

Education Series B: The Pure and Applied Mathematics 15 (3): 209-215.

İlarslan, K. & Nesovic, E. 2009. Spacelike and Timelike Normal Curves in Minkowski Space-Time,

Publications de l’Institut Mathématique 85(99): 111-118.

İlarslan, K. & Nesovic, E. 2011. Some Characterizations Of Pseudo And Partially Null Osculating Curves

In Minkowski Space, International Electronic Journal of Geometry 4(2): 1-12.

Kahraman, F., Gök, İ. & İlarslan, K. 2014. Generalized Null Bertrand Curves in Minkowski Space-

Time, Annals of the Alexandru Ioan Cuza University - Mathematics (N.S.) 60(2): 489-502.

Lucas, P. & Ortega-Yagües J.A. 2012. Bertrand curves in the three-dimensional sphere, Journal of

Geometry and Physics 62: 1903-1914.

Kuhnel, W. (1999). Differential geometry: curves-surfaces-manifolds, Braunschweig, Wiesbaden,

Matsuda, H. & Yorozu, S. 2003. Notes on Bertrand curves, Yokohama Mathematical Journal 50 (1-2):

-58.

O’Neill, B. 1983. Semi-Riemannian geometry with applications to relativity. Academic Press, New York.

Oztekin, H. B. 2009. Weakened Bertrand curves in the Galilean space 3 G , Journal of Advanced

Mathematical Studies 2 (2): 69-76.

Pears, L. R. 1935. Bertrand curves in Riemannian space, Journal of the London Mathematical Society 2

(1-10): 180-183

Otsuki, T. 1961. Differential Geometry (Japanese). Asakura Shoten, Tokyo.

Saint Venant, B. 1845. Mémoire sur les lignes courbes non planes, Journal de l’Ecole Polytechnique 18:

-76

Whittemore, J. K. 1940. Bertrand curves and helices, Duke Mathematical Journal 6: 235-245.

Yilmaz, M. Y. & Bektaş, M. 2008. General properties of Bertrand curves in Riemann-Otsuki space,

Nonlinear Analysis 69: 3225-3231.

Downloads

Published

30-09-2015