The first integral method for the perturbed Wadati-Segur- Ablowitz equation with time dependent coefficient

Authors

  • MUSTAFA INC Firat University, Science Faculty, Department of Mathematics, 23119 Elazığ / Türkiye
  • BULENT KILIC Firat University, Science Faculty, Department of Mathematics, 23119 Elazığ / Türkiye

Keywords:

Analytical solutions, FIM, pWSA, traveling wave solutions.

Abstract

The first integral method (FIM) is used to construct traveling wave solutions ofperturbed Wadati-Segur-Ablowitz (pWSA) equation with time dependent coefficient inthis manuscript. We obtained some different solutions by using Gauge transformationwith time dependent coefficient of variable transformations. The method is aneffective method to construct the different types of exact solutions of nonlinear partialdifferential equations (NPDE).

References

Abbasbandy, S. & Shirzadi, A. (2010) The first integral method for modified Benjamin-Bona-Mahony

equation. Communications in Nonlinear Science and Numerical Simulation 15: 1759-1764.

Bekir A. & Ünsal, O. (2012) Analytic treatment of nonlinear evolution equations using first integral

method. Pramana 79:3-17.

Bourbaki, N. (1972) Commutative Algebra. Addison-Wesley, Paris.

Ding, T. R. & Li, C. Z. (1996) Ordinary differential equations. Peking University Press, Peking.

Drazin, P. G. & Jhonson, R. S. (1989) Solitons: An introduction. Cambridge University Press,

Cambridge.

Feng, Z. S. (2002) The first integral method to study the Burgers-Korteweg-deVries equation. Journal

Physics A 35: 343-349.

Fu, Z., Liu, S., Liu, S. & Zhao, Q. (2001) New Jacobi elliptic function expansion and new periodic

solutions of nonlinear wave equations. Physics Letters A 290: 72-76.

He, Y., Li S. & Long Y. (2013) Exact solutions of the modified Benjamin-Bona-Mahoney (mBBM)

equation by using the first integral method. Differential Equations and Dynamical Systems

(3):199–204.

Hu, X. B. & Ma, W. X. (2002) Application of Hirota’s bilinear formalism to the Toeplitz lattice-some

special soliton-like solutions. Physics Letters A 293: 161-165.

Ghany, H. A. & Hydar, A. A. (2014) Exact solutions for the wick-type stochastic time-fractional KdV

equations, Kuwait Journal of Science 41(1): 75-84.

Gang, M. & Chanclani, L. (2013) Solution of the nonlinear q-schrodinger equation by two dimensional

q-differential transform method, Kuwait Journal of Science 40(2): 17-30.

Jafari, H., Sooraki, A. & Khalique, C. M. (2013) Dark solitons of the Biswas–Milovic equation by the

first integral method. Optik - International Journal for Light and Electron Optics 124: 3929-3932.

Jafari H., Soorakia A., Talebia, Y. & Biswas A. (2012) The First integral method and traveling wave

solutions to Davey–Stewartson equation. Nonlinear Analysis: Modelling and Control 17: 182–

Kim, H., Bae, J. H. & Sakthivel, R. (2014) Exact travelling wave solutions of two ımportant nonlinear

partial differential equations. Z. Naturforsch. 69a: 155 – 162.

Kim, H. & Sakthivel, R. (2012) New exact traveling wave solutions of some nonlinear higher-dimensional

physical models. Reports on Mathematical Physics 70: 39-50.

Liu, J. & Yang K. (2004) The extended F-expansion method and exact solutions of nonlinear PDEs.

Chaos, Solitons and Frcatals 22: 111–121.

Parkes, E. J. & Duffy, B. R. (1996) An automated tanh-function method for finding solitary wave

solutions to non-linear evolution equations. Computer Physics Communications 98: 288-300.

Raslan, K. R. (2008) The first integral method for solving some important nonlinear partial differential

equations. Nonlinear Dynamic 53: 281–286.

Sakthivel, R., Chun, C. & Lee, J. (2010) New travelling wave solutions of Burgers equation with finite

transport memory. Z. Naturforsch. 65a: 633 – 640.

Sakthivel, R. & Chun, C. (2010) New soliton solutions of Chaffee-Infante equations using the expfunction

method. Zeitschrift für Naturforschung A: A Journal of Physical Sciences 65(3): 197-202.

Taghizadeh, N. & Najand, M. (2012) Comparison of solutions of mKdV equation by using the first

integral method and (G′/G )-expansion method. Mathematica Aeterna 2: 309 - 320.

Tascan, F. & Bekir, A. (2009) Travelling wave solutions of the CahnAllen equation by using first integral

method. Applied Mathematics and Computation 207: 279–282.

Wadati, M., Segur, H. & Ablowitz, M. J. (1992) A new Hamiltonian amplitude equation governing

modulated wave instabilities. Journal of the Physical Society of Japan 61: 1187-1193.

Wang, M., Li, X. & Zhang, J. (2008) The (G )

G

′ -expansion method and travelling wave solutions of

nonlinear evolution equations in mathematical physics. Physics Letters A 372: 417-423.

Wu, X. H. & He, J. H. (2007) Solitary solutions, periodic solutions and compacton-like solutions using

the Exp-function method. Computer Mathematics with Application 54: 966–986.

Yun-Quan, K. & Jun, Y. (2005) The First integral method to study a class of reaction-diffusion equations.

Communications in Theoretical Physics 43: 597–600.

Downloads

Published

14-12-2015