Novel synthesis of crystalline mesoporous tin dioxide doped with nanogold

Authors

Keywords:

bandgap, crystalline, mesoporous, nanogold, tin dioxide.

Abstract

We report the successful synthesis of a new material, a crystalline mesoporous tin dioxide (m-SnO2) framework that contains nanogold clusters (m-SnO2-Au), prepared using a direct soft method under ambient pressure. The structure, bulk, and surface properties of this new material are analyzed and confirmed by N2 adsorption–desorption analysis, powder X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy. The material possesses a high Brunauer–Emmett–Teller (BET) surface area of 97 m2g–1, a narrow pore size distribution (2.1 to 3.3 nm) with an average pore diameter of 2.7 nm, and an average pore volume of 0.06 cm3g–1. We believe that the nanogold clusters initially occupy the pores of the mesoporous tin dioxide, thus restricting their growth before diffusing into the walls of tin dioxide during the second heat treatment. The median nanogold cluster size is 1.4 nm, indicating that this method controls both the porous structure and the size of the cluster within. The synthesized m-SnO2-Au material has a relatively small bandgap of 3.0 eV, as determined using the Kubelka-Munk function. The UV-Vis and white-light optical sensitivities of m-SnO2-Au are considerably higher than those of the parent material m-SnO2.

Author Biography

Tariq Aqeel, PAAET

Assistant Professor in Inorganic Chemistry

References

Abdullah, A. M., Al-Thani, N. J., Tawbi K. & Al-Kandari,

H. (2016). Carbon/nitrogen-doped TiO2: New synthesis route,

characterization and application for phenol degradation, Arabian

Journal of Chemistry, 9:229–237.

Aqeel, T., Greer, H. F., Zhou, W., Bruce, D. W. & Bumajdad, A.

(2016). Novel direct synthesis of mesoporous tin dioxide network

intact up to 500 °C, Journal of Nano Research, 40:79–89.

Aqeel, T. & Bumajdad, A. (2017). Use of mesoporous tin dioxide

containing zinc oxide nanoparticles for degradation of phenol by

sunlight, Science of Advanced Materials, 9:1–10.

Asiri, A. M., Al-Amoudi, M. S., Al-Talhi, T. A. & Al-Talhi, A.

D. (2011). Photodegradation of Rhodamine 6G and phenol red by

nanosized TiO2 under solar irradiation, Journal of Saudi Chemical

Society, 15:121–128.

Aswaghosh, L., Manoharan, D. & Victor Jaya, N. (2016). Defect

structure and optical phonon confinement in ultrananocrystalline

BixSn1-xO2 (x = 0, 0.03, 0.05, and 0.08) synthesized by a

sonochemical method, Physical Chemistry Chemical Physics,

:5995–6004.

Bakke, T., Klungsoyr, J. & Sanni, S. (2013). Environmental

impacts of produced water and drilling waste discharges from the

Norwegian offshore petroleum industry, Marine Environmental

Research, 92:154–169.

Benhebal, H., Chaib, M., Léonard, A., Lambert, S. D. & Crine,

M. (2011). Synthesis, characterization and photocatalytic properties

of alkali metals doped tin dioxide, Journal of Molecular Structure,

, 222–226.

Benhebal, H., Chaib, M., Salmon, T., Geens, J., Leonard, A.,

et al. (2013). Photocatalytic degradation of phenol and benzoic

acid using zinc oxide powders prepared by the sol–gel process,

Alexandria Engineering Journal, 52:517-523.

Brunet, E., Maier, T., Mutinati, G. C., Steinhauer, S., Köck, A.,

et al. (2012). Comparison of the gas sensing performance of SnO2

thin film and SnO2 nanowire, Sensors and Actuators B: Chemical,

:110–118.

Brus, L. E. (1984). Electron-electron and electron-hole interactions

in small semiconductor crystallites: The size dependence of the

lowest excited electronic state, Journal of Chemical Physics,

:4403–4409.

Chen, G., Seo, J., Yang, C. & Prasad, P. N. (2013). Nanochemistry

and nanomaterials for photovoltaics, Chemical Society Reviews,

:8304–8338.

Chowdhury, H., Xu, X., Huynh, P. & Cortie, M. B. (2005).

Radiative heat transfer across glass coated with gold nano-particles,

Journal of Solar Energy Engineering, 127:70–75.

Diéguez, A., Romano-Rodríguez, A., Morante, J. R., Weimar,

U., Schweizer-Berberich, M., et al. (1996). Morphological

analysis of nanocrystalline SnO2 for gas sensor applications.

Sensors and Actuators B Chem. 31, 1–8.

Fatimah, I., Wijaya, K. & Narsito (2015). Microwave assisted

preparation of TiO2/Al-pillared saponite for photocatalytic phenol

photo-oxidation in aqueous solution, Arabian Journal of Chemistry,

:228–232.

Fuchs, A., Schimper, H. J., Klein, A. & Jaegermann, W.

(2011). Photoemission studies on undoped SnO2 buffer layers for

CdTe thin film solar cells, European Materials Research Society

Conference Symp. Advanced Inorganic Materials and Concepts for

Photovoltaics, Energy Procedia, 10:149-154. Nice, France.

Ganose, A. M. & Scanlon, D. O. (2016). Band gap and work

function tailoring of SnO2 for improved transparent conducting ability

in photovoltaics, Journal of Materials Chemistry C, 4:1467–1475.

Goudeli, E. & Pratsinis, S. E. (2016). Crystallinity dynamics of

gold nanoparticles during sintering or coalescence, AIChE Journal,

(2):589–598.

Gutierrez, E., Powell, R.D., Furuya, F. R.,Hainfeld, J. F., Schaa,

T. G., et al. (1999). Green gold, a giant cluster compound of unusual

electronic structure, The European Physical Journal, D9:647–651.

Gutierrez-Wing, C., Ascensio, J. & Jose-Yacaman, M. J. (1997).

Isolation of smaller nanocrystal Au molecules: Robust quantum

effects in optical spectra, The Journal of Physical Chemistry B,

:7885–7891.

Hostetler, M. J., Wingate, J. E., Zhong, C. J., Harris, J. E.,

Vachet, R.W., et al. (1998). Alkanethiolate gold cluster molecules

with core diameters from 1.5 to 5.2 nm: core and monolayer

properties as a function of core size, Langmuir, 14:17-30.

Huang, B. J., Li, F., Zhang, C.W, Li, P. & Wang, P. J. (2014).

Electronic structure and optical properties of Ag doped SnO2

nanoribbons, Royal Society of Chemistry Advances, 4:41819–41824.

Kumar, S. S., Kumar, C. S., Mathiyarasu, J. & Phani, K.

L. (2007). Stabilized gold nanoparticles by reduction using

,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous

solutions: Nanocomposite formation, stability, and application in

catalysis, Langmuir, 23:3401–3408.

Liu, J., Wang, F., Qi, S., Gua, Z. & Wu, G. (2013). Highly

selective epoxidation of styrene over gold–silica catalysts via onepot

synthesis: synthesis, characterization, and catalytic application,

New Journal of Chemistry, 37:769–774.

Li, X., Cho, J. H., Kurup, P. & Gu, Z. (2012). Novel sensor array

based on doped tin oxide nanowires for organic vapour detection,

Sensors and Actuators B: Chemical, 162:251–258.

Loukanov, A. R. & Gagov, H. (2012). High-resolution subunit

detection of glutamate receptor by ultrasmall gold nanoparticles,

microscopy research and technique, 75:1159–1164.

Magis, G. J., Hollander, M. J., Onderwaater, W. G., Olsen, J.

D., Hunter, C. N., et al. (2010). Light harvesting, energy transfer

and electron cycling of a native photosynthetic membrane adsorbed

onto a gold surface, Biochimica et BiophysicaActa, 1798:637–645.

Manikandan, M., Tanabe, T., Ramesh, G. V., Kodiyath, R.,

Ueda, S., etal. (2016). Tailoring the surface-oxygen defects of a tin

dioxide support towards an enhanced electrocatalytic performance

of platinum nanoparticles, Physical Chemistry and Chemical

Physics, 18:5932–5937.

Morris, L., Williams, D. E., Kaltsoyannis, N. & Tocher, D. A.

(2001). Surface grafting as a route to modifying the gas-sensitive

resistor properties of semiconducting oxides : Studies of Ru-grafted

SnO2, Physical Chemistry Chemical Physics, 3:132–145.

Nancy-Xu, X. H., Huang, S., Brownlow, W., Salaita, K. &

Jeffers, R. B. (2004). Size and temperature dependence of surface

plasmon absorption of gold nanoparticles induced by tris(2,2-

bipyridine) ruthenium(II), The Journal of Physical Chemistry B,

:15543–5551.

Okamoto, T. & Yamaguchi, I. (2003). Optical absorption study of

the surface plasmon resonance in gold nanoparticles immobilized

onto a gold substrate by self-assembly technique, The Journal of

Physical Chemistry B, 107:10321–10324.

Popescu, D. A., Herrmann, J. M., Ensuque, A. & Bozon-

Verduraz, F. (2001). Nanosized tin dioxide: Spectroscopic (UV.

VIS, NIR, EPR) and electrical conductivity studies, Physical

Chemistry Chemical Physics, 3:2522–2530.

Ritson, J. P., Graham, N. J. D., Templeton, M. R., Clark, J.

M., Gough, R. et al. (2014). The impact of climate change on the

treatability of dissolved organic matter (DOM) in upland water

supplies: A UK perspective, Science of the Total Environment,

–474:714–730.

Rodriguez, P., Plana, D., Fermin, D. J. & Koper, M. T. M.

(2014). New insights into the catalytic activity of gold nanoparticles

for CO oxidation in electrochemical media, Journal of

Catalysis, 311:182–189.

Sawada, H., Esaki, M. & Practical, A. (2000). A practical

technique to postfix nanogold-immuno labeled specimens with

osmium and to embed them in epon for electron microscopy, The

Journal of Histochemistry and Cytochemistry, 48:493–498.

Severin, K. G., Abdel-Fattah, T. M. & Pinnavaia,T. J. (1998).

Supramolecular assembly of mesostructured tin oxide. Chemical

Communications, 1471–1472.

Shaalan, N. M., Hamad, D., Abdel-Latief, A. Y. & Abdel-Rahim,

M. A. (2016). Preparation of quantum size of tin oxide: Structural

and physical characterization, Progress in Natural Science:

Materials International, 26:145–151.

Sing, K. S. W., Everett, D. H., Haul, R. A. W., Mouscou, L.,

Pierottin, R. A., et al. (1985). Reporting physisorption data for gas/

solid systems with special reference to the determination of surface

area and porosity, Pure and Applied Chemistry, 57:603–619.

Smith, A. J., McGowan, T., Devlin, M. J., Massoud, M. S., Al-

Enezi, M., et al. (2015). Screening for contaminant hotspots in the

marine environment of Kuwait using ecotoxicological and chemical

screening techniques, Marine Pollution Bulletin, 100(2):681–688,

doi.org/10.1016/j.marpolbul.2015.08.043.

Smith, A. M. & Nie, S. (2011). Bright and compact alloyed

quantum dots with broadly tunable near-infrared absorption and

fluorescence spectra through mercury cation exchange, Journal of

American Chemical Society, 133:24–26.

Tonezzer, M. & Hieu, N. V. (2012). Size-dependent response of

single-nanowire gas sensors, Sensors and Actuators B: Chemical,

:146–152.

Tunstall, D.P., Patou, S., Liu, R.S. & Kao, Y.H. (1999). Size

effects in the NMR of SnO2 powders. MaterialsResearch Bulletin,

:1513–1520.

Uddin, M. T., Nicolas, Y., Olivier, C., Toupance, T., Servant,

L., et al. (2012). Nanostructured SnO2–ZnO heterojunction

photocatalysts showing enhanced photocatalytic activity for the

degradation of organic dyes, Inorganic Chemistry, 51:7764–7773.

Wagner, Th., Bauer, M., Sauerwald, T. Kohl, C. D. & Tiemann,

M. (2011). X-ray absorption near-edge spectroscopy investigation

of the oxidation state of Pd species in nanoporous SnO2 gas sensors

for methane detection, Thin Solid Films, 520:909–912.

Woehrle, G. H., Warner, M. G. & Hutchison, J. E. (2002).

Ligand exchange reactions yield subnanometer, thiol-stabilized

gold particles with defined optical transitions, Journal of Physical

Chemistry B, 106:9979–9981.

Yu, W., Jiang, K., Wu, J., Gan, J., Zhu, M., et al. (2011).

Electronic structures and excitonic transitions in nanocrystalline

iron-doped tin dioxide diluted magnetic semiconductor films: An

optical spectroscopic study, Physical Chemistry Chemical Physics,

:6211–6222.

Zhao, Y., Dong, G., Duan, L., Qiao, J., Zhang, D., et al. (2012).

Impacts of Sn precursors on solution-processed amorphous zinc–

tin oxide films and their transistors, Royal Society of Chemistry

Advances, 2:5307–5313.

Zhang, G. & Liu, M. (2000). Effect of particle size and dopant

on properties of SnO2-based gas sensors, Sensors and Actuators B,

:144–152.

Downloads

Published

02-05-2018