Novel synthesis of crystalline mesoporous tin dioxide doped with nanogold
Keywords:
bandgap, crystalline, mesoporous, nanogold, tin dioxide.Abstract
We report the successful synthesis of a new material, a crystalline mesoporous tin dioxide (m-SnO2) framework that contains nanogold clusters (m-SnO2-Au), prepared using a direct soft method under ambient pressure. The structure, bulk, and surface properties of this new material are analyzed and confirmed by N2 adsorption–desorption analysis, powder X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy. The material possesses a high Brunauer–Emmett–Teller (BET) surface area of 97 m2g–1, a narrow pore size distribution (2.1 to 3.3 nm) with an average pore diameter of 2.7 nm, and an average pore volume of 0.06 cm3g–1. We believe that the nanogold clusters initially occupy the pores of the mesoporous tin dioxide, thus restricting their growth before diffusing into the walls of tin dioxide during the second heat treatment. The median nanogold cluster size is 1.4 nm, indicating that this method controls both the porous structure and the size of the cluster within. The synthesized m-SnO2-Au material has a relatively small bandgap of 3.0 eV, as determined using the Kubelka-Munk function. The UV-Vis and white-light optical sensitivities of m-SnO2-Au are considerably higher than those of the parent material m-SnO2.
References
Abdullah, A. M., Al-Thani, N. J., Tawbi K. & Al-Kandari,
H. (2016). Carbon/nitrogen-doped TiO2: New synthesis route,
characterization and application for phenol degradation, Arabian
Journal of Chemistry, 9:229–237.
Aqeel, T., Greer, H. F., Zhou, W., Bruce, D. W. & Bumajdad, A.
(2016). Novel direct synthesis of mesoporous tin dioxide network
intact up to 500 °C, Journal of Nano Research, 40:79–89.
Aqeel, T. & Bumajdad, A. (2017). Use of mesoporous tin dioxide
containing zinc oxide nanoparticles for degradation of phenol by
sunlight, Science of Advanced Materials, 9:1–10.
Asiri, A. M., Al-Amoudi, M. S., Al-Talhi, T. A. & Al-Talhi, A.
D. (2011). Photodegradation of Rhodamine 6G and phenol red by
nanosized TiO2 under solar irradiation, Journal of Saudi Chemical
Society, 15:121–128.
Aswaghosh, L., Manoharan, D. & Victor Jaya, N. (2016). Defect
structure and optical phonon confinement in ultrananocrystalline
BixSn1-xO2 (x = 0, 0.03, 0.05, and 0.08) synthesized by a
sonochemical method, Physical Chemistry Chemical Physics,
:5995–6004.
Bakke, T., Klungsoyr, J. & Sanni, S. (2013). Environmental
impacts of produced water and drilling waste discharges from the
Norwegian offshore petroleum industry, Marine Environmental
Research, 92:154–169.
Benhebal, H., Chaib, M., Léonard, A., Lambert, S. D. & Crine,
M. (2011). Synthesis, characterization and photocatalytic properties
of alkali metals doped tin dioxide, Journal of Molecular Structure,
, 222–226.
Benhebal, H., Chaib, M., Salmon, T., Geens, J., Leonard, A.,
et al. (2013). Photocatalytic degradation of phenol and benzoic
acid using zinc oxide powders prepared by the sol–gel process,
Alexandria Engineering Journal, 52:517-523.
Brunet, E., Maier, T., Mutinati, G. C., Steinhauer, S., Köck, A.,
et al. (2012). Comparison of the gas sensing performance of SnO2
thin film and SnO2 nanowire, Sensors and Actuators B: Chemical,
:110–118.
Brus, L. E. (1984). Electron-electron and electron-hole interactions
in small semiconductor crystallites: The size dependence of the
lowest excited electronic state, Journal of Chemical Physics,
:4403–4409.
Chen, G., Seo, J., Yang, C. & Prasad, P. N. (2013). Nanochemistry
and nanomaterials for photovoltaics, Chemical Society Reviews,
:8304–8338.
Chowdhury, H., Xu, X., Huynh, P. & Cortie, M. B. (2005).
Radiative heat transfer across glass coated with gold nano-particles,
Journal of Solar Energy Engineering, 127:70–75.
Diéguez, A., Romano-Rodríguez, A., Morante, J. R., Weimar,
U., Schweizer-Berberich, M., et al. (1996). Morphological
analysis of nanocrystalline SnO2 for gas sensor applications.
Sensors and Actuators B Chem. 31, 1–8.
Fatimah, I., Wijaya, K. & Narsito (2015). Microwave assisted
preparation of TiO2/Al-pillared saponite for photocatalytic phenol
photo-oxidation in aqueous solution, Arabian Journal of Chemistry,
:228–232.
Fuchs, A., Schimper, H. J., Klein, A. & Jaegermann, W.
(2011). Photoemission studies on undoped SnO2 buffer layers for
CdTe thin film solar cells, European Materials Research Society
Conference Symp. Advanced Inorganic Materials and Concepts for
Photovoltaics, Energy Procedia, 10:149-154. Nice, France.
Ganose, A. M. & Scanlon, D. O. (2016). Band gap and work
function tailoring of SnO2 for improved transparent conducting ability
in photovoltaics, Journal of Materials Chemistry C, 4:1467–1475.
Goudeli, E. & Pratsinis, S. E. (2016). Crystallinity dynamics of
gold nanoparticles during sintering or coalescence, AIChE Journal,
(2):589–598.
Gutierrez, E., Powell, R.D., Furuya, F. R.,Hainfeld, J. F., Schaa,
T. G., et al. (1999). Green gold, a giant cluster compound of unusual
electronic structure, The European Physical Journal, D9:647–651.
Gutierrez-Wing, C., Ascensio, J. & Jose-Yacaman, M. J. (1997).
Isolation of smaller nanocrystal Au molecules: Robust quantum
effects in optical spectra, The Journal of Physical Chemistry B,
:7885–7891.
Hostetler, M. J., Wingate, J. E., Zhong, C. J., Harris, J. E.,
Vachet, R.W., et al. (1998). Alkanethiolate gold cluster molecules
with core diameters from 1.5 to 5.2 nm: core and monolayer
properties as a function of core size, Langmuir, 14:17-30.
Huang, B. J., Li, F., Zhang, C.W, Li, P. & Wang, P. J. (2014).
Electronic structure and optical properties of Ag doped SnO2
nanoribbons, Royal Society of Chemistry Advances, 4:41819–41824.
Kumar, S. S., Kumar, C. S., Mathiyarasu, J. & Phani, K.
L. (2007). Stabilized gold nanoparticles by reduction using
,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous
solutions: Nanocomposite formation, stability, and application in
catalysis, Langmuir, 23:3401–3408.
Liu, J., Wang, F., Qi, S., Gua, Z. & Wu, G. (2013). Highly
selective epoxidation of styrene over gold–silica catalysts via onepot
synthesis: synthesis, characterization, and catalytic application,
New Journal of Chemistry, 37:769–774.
Li, X., Cho, J. H., Kurup, P. & Gu, Z. (2012). Novel sensor array
based on doped tin oxide nanowires for organic vapour detection,
Sensors and Actuators B: Chemical, 162:251–258.
Loukanov, A. R. & Gagov, H. (2012). High-resolution subunit
detection of glutamate receptor by ultrasmall gold nanoparticles,
microscopy research and technique, 75:1159–1164.
Magis, G. J., Hollander, M. J., Onderwaater, W. G., Olsen, J.
D., Hunter, C. N., et al. (2010). Light harvesting, energy transfer
and electron cycling of a native photosynthetic membrane adsorbed
onto a gold surface, Biochimica et BiophysicaActa, 1798:637–645.
Manikandan, M., Tanabe, T., Ramesh, G. V., Kodiyath, R.,
Ueda, S., etal. (2016). Tailoring the surface-oxygen defects of a tin
dioxide support towards an enhanced electrocatalytic performance
of platinum nanoparticles, Physical Chemistry and Chemical
Physics, 18:5932–5937.
Morris, L., Williams, D. E., Kaltsoyannis, N. & Tocher, D. A.
(2001). Surface grafting as a route to modifying the gas-sensitive
resistor properties of semiconducting oxides : Studies of Ru-grafted
SnO2, Physical Chemistry Chemical Physics, 3:132–145.
Nancy-Xu, X. H., Huang, S., Brownlow, W., Salaita, K. &
Jeffers, R. B. (2004). Size and temperature dependence of surface
plasmon absorption of gold nanoparticles induced by tris(2,2-
bipyridine) ruthenium(II), The Journal of Physical Chemistry B,
:15543–5551.
Okamoto, T. & Yamaguchi, I. (2003). Optical absorption study of
the surface plasmon resonance in gold nanoparticles immobilized
onto a gold substrate by self-assembly technique, The Journal of
Physical Chemistry B, 107:10321–10324.
Popescu, D. A., Herrmann, J. M., Ensuque, A. & Bozon-
Verduraz, F. (2001). Nanosized tin dioxide: Spectroscopic (UV.
VIS, NIR, EPR) and electrical conductivity studies, Physical
Chemistry Chemical Physics, 3:2522–2530.
Ritson, J. P., Graham, N. J. D., Templeton, M. R., Clark, J.
M., Gough, R. et al. (2014). The impact of climate change on the
treatability of dissolved organic matter (DOM) in upland water
supplies: A UK perspective, Science of the Total Environment,
–474:714–730.
Rodriguez, P., Plana, D., Fermin, D. J. & Koper, M. T. M.
(2014). New insights into the catalytic activity of gold nanoparticles
for CO oxidation in electrochemical media, Journal of
Catalysis, 311:182–189.
Sawada, H., Esaki, M. & Practical, A. (2000). A practical
technique to postfix nanogold-immuno labeled specimens with
osmium and to embed them in epon for electron microscopy, The
Journal of Histochemistry and Cytochemistry, 48:493–498.
Severin, K. G., Abdel-Fattah, T. M. & Pinnavaia,T. J. (1998).
Supramolecular assembly of mesostructured tin oxide. Chemical
Communications, 1471–1472.
Shaalan, N. M., Hamad, D., Abdel-Latief, A. Y. & Abdel-Rahim,
M. A. (2016). Preparation of quantum size of tin oxide: Structural
and physical characterization, Progress in Natural Science:
Materials International, 26:145–151.
Sing, K. S. W., Everett, D. H., Haul, R. A. W., Mouscou, L.,
Pierottin, R. A., et al. (1985). Reporting physisorption data for gas/
solid systems with special reference to the determination of surface
area and porosity, Pure and Applied Chemistry, 57:603–619.
Smith, A. J., McGowan, T., Devlin, M. J., Massoud, M. S., Al-
Enezi, M., et al. (2015). Screening for contaminant hotspots in the
marine environment of Kuwait using ecotoxicological and chemical
screening techniques, Marine Pollution Bulletin, 100(2):681–688,
doi.org/10.1016/j.marpolbul.2015.08.043.
Smith, A. M. & Nie, S. (2011). Bright and compact alloyed
quantum dots with broadly tunable near-infrared absorption and
fluorescence spectra through mercury cation exchange, Journal of
American Chemical Society, 133:24–26.
Tonezzer, M. & Hieu, N. V. (2012). Size-dependent response of
single-nanowire gas sensors, Sensors and Actuators B: Chemical,
:146–152.
Tunstall, D.P., Patou, S., Liu, R.S. & Kao, Y.H. (1999). Size
effects in the NMR of SnO2 powders. MaterialsResearch Bulletin,
:1513–1520.
Uddin, M. T., Nicolas, Y., Olivier, C., Toupance, T., Servant,
L., et al. (2012). Nanostructured SnO2–ZnO heterojunction
photocatalysts showing enhanced photocatalytic activity for the
degradation of organic dyes, Inorganic Chemistry, 51:7764–7773.
Wagner, Th., Bauer, M., Sauerwald, T. Kohl, C. D. & Tiemann,
M. (2011). X-ray absorption near-edge spectroscopy investigation
of the oxidation state of Pd species in nanoporous SnO2 gas sensors
for methane detection, Thin Solid Films, 520:909–912.
Woehrle, G. H., Warner, M. G. & Hutchison, J. E. (2002).
Ligand exchange reactions yield subnanometer, thiol-stabilized
gold particles with defined optical transitions, Journal of Physical
Chemistry B, 106:9979–9981.
Yu, W., Jiang, K., Wu, J., Gan, J., Zhu, M., et al. (2011).
Electronic structures and excitonic transitions in nanocrystalline
iron-doped tin dioxide diluted magnetic semiconductor films: An
optical spectroscopic study, Physical Chemistry Chemical Physics,
:6211–6222.
Zhao, Y., Dong, G., Duan, L., Qiao, J., Zhang, D., et al. (2012).
Impacts of Sn precursors on solution-processed amorphous zinc–
tin oxide films and their transistors, Royal Society of Chemistry
Advances, 2:5307–5313.
Zhang, G. & Liu, M. (2000). Effect of particle size and dopant
on properties of SnO2-based gas sensors, Sensors and Actuators B,
:144–152.