### An improvement of the douglas scheme for the Black-Scholes equation

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Black, F. & Scholes, M. 1973. The pricing of options and corporate liabilities, The Journal of Political

Economy, 81, 637-659.

Brennan, M.J. & Schwartz, E. S. 1978. Finite difference methods and jump processes arising in the

pricing of contingent claims, A synthesis, Journal of Financial and Quantitative Analysis., 13,

-474.

Chawla, M. M. & Evans, D. J. 2005. A new L-stable Simpson rule for the diffusion equation,

International Journal of Computer Mathematics, 82 , 601-607.

Crank, J. & Nicolson, P. 1947. A practical method for numerical evaluation of solutions of partial

differential equations of the heat-conduction type, Mathematical Proceedings of the Cambridge

Philosophical Society., 43, 50-67.

Geske, R. & Shastri, K. 1985. Valuation by approximation: a comparison of alternative option valuation

techniques, Journal of Financial and Quantitative Analysis., 20, 45-71.

Lambert, J. D. 1991. Numerical methods for ordinary differential systems, John Wiley, New York.

Numerov, B. V. 1924. A method of extrapolation of perturbations, Monthly Notices of the Royal

Astronomical Society 84, 592-601.

Shaw, W. T. 1998. Modelling financial derivatives with mathematica, Cambridge University Press,

Cambridge.

Smith, G. D. 1985. Numerical solution of partial differential equations, 3rd edition, Oxford University

Press, Oxford.

Wilmott, P., Howison, S. & Dewynne, J. 1995. The mathematics of financial derivatives, A Student

Introduction, Cambridge University Press, Cambridge

### Refbacks

- There are currently no refbacks.