Efficient estimation in ZIP models with applications to count data

Authors

  • Nurul N. Mohamad Institute of Mathematical Sciences, Fakulty of Science,University of Malaya, 50603 Kuala Lumpur, Malaysia.
  • Ibrahim Mohamed Institute of Mathematical Sciences, Fakulty of Science,University of Malaya, 50603 Kuala Lumpur, Malaysia.
  • Ng Kok-Haur Institute of Mathematical Sciences, Fakulty of Science,University of Malaya, 50603 Kuala Lumpur, Malaysia.
  • Mohd S. Yahya Institute of Mathematical Sciences, Fakulty of Science,University of Malaya, 50603 Kuala Lumpur, Malaysia.

Keywords:

Quadratic estimating functions, Linear estimating functions, Count data, Zero-inflated

Abstract

Estimating functions have been used in estimating parameters of many continuous time series
models. However, this method has not been applied to models involving count data. In
this paper, we use quadratic estimating functions (QEF) to derive estimators for the joint estimation of the conditional mean and variance parameters of count data models, specifically
the basic zero-inflated Poisson (ZIP) model, ZIP regression model and integer-valued generalized autoregressive heteroscedastic model with ZIP conditional distribution. Results show that the estimators derived from QEF method, which uses information from combined estimating functions, is more informative than linear estimating functions (LEF) method that only uses information from component estimating functions. Finally, we also fit the real data sets using the ZIP models via QEF, LEF and maximum likelihood methods, and in so doing, demonstrate the superiority of the QEF method in practice.

References

Abaza, B. (1982). A recursive formulation for

the two-step least squares estimator. Kuwait

Journal of Science, 9: 77-85.

Allen, D., Ng, K.H. & Shelton, P. (2013).

Estimating and simulating Weibull models

of risk or price durations: An application to

ACD models. North American Journal of Economics

and Finance, 25: 214-225.

Bahadur, R.R. (1958). Examples of inconsistency

of maximum likelihood estimates.

Sankhya: The Indian Journal of Statistics, 20:

-210.

Baksh, M.F., Bhning, D. & Lerdsuwansri,

R. (2011). An extension of an over-dispersion

test for count data. Computational Statistics

and Data Analysis, 55(1): 466-474.

Bera, A.K., Bilias, Y. & Simlai, P. (2006).

Estimating functions and equations: An essay

on historical developments with applications

to econometrics. Palgrave Handbook of

Econometrics, 1: 427-476.

Brockwell, P.J. & Davis, R.A. (1991). Time

series: Theory and methods. Springer Science

& Business Media. New York. pp. 106-110.

Chan, K.S. & Ledolter, J. (1995). Monte

Carlo EM estimation for time series models

involving counts. Journal of the American Statistical Association, 90(429): 242-252.

Chandra, S.A. & Taniguchi, M. (2001). Estimating

functions for nonlinear time series

models. Annals of the Institute of Statistical

Mathematics, 53(1): 591-597.

Crowder, M. (1987). On linear and quadratic

estimating functions. Biometrica, 74(3): 591-

Godambe, V.P. (1985). The foundations of finite

sample estimation in stochastic processes.

Biometrika, 72(2): 419-428.

Godambe, V.P. & Heyde, C.C. (2010).

Quasi-likelihood and optimal estimation. Selected

Works of CC Heyde, Springer. New

York. pp. 386-399.

Kharrati-Kopaei, M. & Faghih, H. (2011).

Inferences for the inflation parameter in the

ZIP distributions: The method of moments.

Statistical Methodology, 8(4): 377-388.

Lambert, D. (1992). Zero-inflated Poisson

regression, with an application to defects in

manufacturing. Technometrics, 34(1): 1-14.

Liang, Y., Thavaneswaran, A. & Abraham,

B. (2011). Joint estimation using quadratic estimating

function. Journal of Probability and

Statistics. DOI:10.1155/2011/372512.

Merkouris, T. (2007). Transform martingale

estimating functions. The Annals of Statistics,

(5): 1975-2000.

Nanjundan, G. & Naika, T.R. (2012).

Asymptotic comparison of method of moments

estimators and maximum likelihood estimators

of parameters in zero-inflated Poisson

model. Applied Mathematics, 3(6): 610-616.

Ng, K.H. & Peiris, S. (2013). Modelling high

frequency transaction data in financial economics:

A comparative study based on simulations.

Economic Computation and Economic

Cybernetics Studies and Research, 47(2): 189-

Ng, K.H., Shelton, P., Thavaneswaran, A. &

Ng, K.H. (2015). Modelling the risk or price

durations in financial markets: Quadratic estimating

functions and applications. Economic

Computation and Economic Cybernetics Studies

and Research, 49(1): 223-238.

Staub, K.E. &Winkelmann, R. (2012). Consistent

estimation of zero-inflated count models.

Health Economics, 22(6): 673-686.

Thavaneswaran, A. & Abraham, B. (1988).

Estimation for nonlinear time series models

using estimating equations. Journal of Time

Series Analysis, 9(1): 673-686.

Thavaneswaran, A., Ravishanker, N. &

Liang, Y. (2015). Generalized duration models

and optimal estimation using estimating

functions. Annals of the Institute of Statistical

Mathematics, 67(1): 129-156.

Vinod, H. (1997). Using Godambe-Durbin

estimating functions in econometrics. Lecture

Notes-Monograph Series. pp. 215-237.

(http://www.jstor.org/stable/4356018)

Zhu, F. (2012). Zero-inflated Poisson and negative

binomial integer-valued GARCH models.

Journal of Statistical Planning and Inference,

(4): 826-839.

Downloads

Published

28-08-2018