Some notes on the space of p-summable sequences




Completion, dense, isometric, separable, the space of p-summable sequences.


Recently, Konca et al. (2015a) have revisited the space p of p -summable sequences of real
numbers and have shown that this space is actually contained in a weighted inner product space called 2 v . In another paper, Konca et al. (2015b) have investigated the space p to show that it is also contained in a weighted 2-inner product space. In this work, we show in the details that p is dense in 2 v as a normed space, and as a 2-normed space. Further, we prove that 2 v is separable and conclude that it is isometric to the completion of p .

Author Biography


Department of Mathematics


Bella, A. & Costantini, C. (2015).

Sequential separability vs selective

sequential separability. Filomat, 29(1): 121-

Gähler, S. (1964). Lineare

-normierte räume. Mathematische

Nachrichten, 28(1-2): 1-43.

Gunawan, H. (2001). The space of psummable

sequences and its natural nnorm.

Bulletin of the Australian

Mathematical Society, 64(1): 137-147.

Gunawan, H., Setya-Budhi, W. &

Mashadi, S. Gemawati. (2005). On

volumes of n-dimensional parallelepipeds

on p spaces. Univerzitet u Beogradu

Publikacije Elektrotehnickog Fakulteta.

Serija Matematika, 16:48-54.

Konca, S., Idris, M. & Gunawan, H.

(2015a). p-Summable sequence spaces with

inner products. Bitlis Eren University

Journal of Science and Technology, 5(1):


Konca, S., Idris, M., Gunawan, H. &

Basarir, M. (2015b). p-Summable

sequence spaces with 2-inner products.

Contemporary Analysis and Applied

Mathematics, 3(2): 213-226.

Konca, S., Idris, M. & Gunawan, H.

(2016). A new 2-inner product on the space

of p-summable sequences. Journal of

Egyptian Mathematical Society, 24: 244-

Konca, S., Gunawan, H. & Basarir, M.

(2014). Some remarks on p as an nnormed

space. Mathematical Sciences

Applications E-Notes, 2(2):45-50.

Retrieved online from


Kreyszig, E. (1989). Introductory

functional analysis with applications. Wiley

Classics Library. Wiley: New York. pp. 21-

, 41-45, 59.

Misiak, A. (1989). n-inner product spaces.

Mathematische Nachrichten, 140: 299-319.

Raj, K., & Sharma, S.K. (2013). Some

new sequence spaces. Applications and

Applied Mathematics, 8(2): 596-613.

Raj, K. & Jamwal, S. (2015). On some

generalized statistically convergent

sequence spaces. Kuwait Journal of

Science, 42(3): 86-104.

Roy, P. (1970). Separability of metric

spaces. Transaction of the American

Mathematical Society, 149(1):19-43.