Omega and related polynomials of polyomino chains of 4 k-cycles

Authors

  • MEHDI ALAEIYAN Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran, 16844 IRAN
  • ALIREZA GILANI Department of Mathematics, Faculty of Science, Islamic Azad University- South Tehran Branch, Tehran, Iran.
  • RASOUL MOJARAD Department of Science, Islamic Azad University, Bushehr Branch, Bushehr, IRAN
  • JAFAR ASADPOUR Islamic Azad University, Miyaneh Branch, Miyaneh, IRAN

Keywords:

Omega polynomial, sadhana polynomial, PI polynomial, strips, polyomino chain

Abstract

Omega polynomial of a graph G is defined, on the ground of "opposite edge strips" ops:   where  is the number of ops strips of length  . The Sadhana polynomial  can also be calculated by ops counting. In this paper we compute these polynomials for polyomino chains of 4 -cycles. Also by using Omega polynomial we can compute the (edge) PI  polynomial for this graph.

References

Ashrafi, A. R., Jalali, M., Ghorbani, M. Diudea, M.V. 2008a. Computing PI and Omega polynomials of an infinite family of fullerenes. MATCH Communications in Mathematical and in Computer Chemistry, 60: 905-916.

Ashrafi, A. R., Manoochehrian, B. Yousefi-Azari, H. 2006. On the PI polynomial of a graph. Utilitas Mathematica, 71: 97-108.

Ashrafi, A. R., Ghorbani, M. Jalali, M. 2008b. Computing Sadhana polynomial of V-phenylenic nanotube and nanotori. Indian Journal of chemistry, 47(A): 535-537.

Diudea, M. V. 2006. Omega polynomial. Carpathian Journal of Mathematics. 22: 43-47.

Diudea, M.V., Cigher, S. John, P.E. 2008. Omega and related counting polynomials. . MATCH Communications in Mathematical and in Computer Chemistry. 60: 237-250.

Ghorbani, M. Ghazi, M. 2010. Computing Omega and PI polynomials of graphs. Digest Journal of Nanomaterials and Biostructures, 5: 843-849.

Golomb, S. W. 1954. Checker boards and polyominoes. Am. Math. Mon. 61: 675-682.

Golomb, S. W. 1965. Polyominoes. Charles Scribner's Sons.

John, P. E., Vizitiu, A.E., Cigher, S. Diudea, M.V. 2007. CI Index in Tubular Nanostructures. MATCH Communications in Mathematical and in Computer Chemistry . 57: 479-484.

Khadikar, P. V., Agrawal, V. K. Karmarkar, S. 2002. Prediction of lipophilicity of polyacenes using quantitative structure-activity relationships. bioorg. Journal of Medicinal Chemistry. 10: 3499-3507.

Klarner, D. A. 1997. Polyominoes. In: Goodman, J.E., O'Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. Pp. 225-242. CRC Press, Boca Raton.

Downloads

Published

07-01-2014