Statistical modeling of extremes under linear and power normalizations with applications to air pollution

Authors

  • H. M. BARAKAT Department of Mathematics, Faculty of Science, Zagazig University, Zagazig-EGYPT
  • E. M. NIGM Department of Mathematics, Faculty of Science, Zagazig University, Zagazig-EGYPT
  • O. M. KHALED Department of Mathematics, Faculty of Science, Port Said University – Port Said - EGYPT

Keywords:

Air pollution, bootstrap technique, generalized extreme value model, generalized Pareto distribution, Kolmogorov-Smirnov test

Abstract

In this paper the Block Maxima (BM) and the Peak Over Threshold (POT) methods are used to model the air pollution in two cities in Egypt. A simulation technique is suggested to choose a suitable threshold value. The validity of full bootstrapping technique for improving the estimation parameters in extreme value models has been checked by Kolmogorov-Smirnov (K-S) test. A new efficiency approach for modeling extreme values is suggested. This approach can convert any ordered data to enlarged block data by using sub-sample bootstrap. By using power normaliziation, for the first time in litrarure, the BM and sub-sample bootstrap methods are applied to model the air pollution. Although, this study is applied on three pollutants in two cities in Egypt, the suggested approaches may be applied on other pollutants in other regions in any country.

References

Athreya, K. B. Fukuchi, J. 1997. Confidence interval for end point of a c.d.f, via bootstrap, J. Statist. Plann. Inference 58: 299-320.

Barakat, H. M., Nigm, E. M. El-Adll, M. E. 2010a. Comparison between the rates of convergence of extremes under linear and under power normalization. Statistical Papers 51(1): 149-164.

Barakat, H. M., Nigm, E. M., Ramadan. A. A. Khaled, O. M. 2010b. A study of the air polluants by extreme value models, J. Appl. Statist. Sci. 18( 2): 199-209.

Barakat, H. M., Nigm, E. M. El-Adll, M. E. 2011. Bootstrapping generalized extreme order statistics. Arab. J. Sci. Eng.(AJSE) 36: 1083-1090.

Christoph, G. Falk, M. 1996. A note on domains of attraction of p-max stable laws Statist. Probab. Lett. 28: 279-284.

Coles, S. G. 2001. An introduction to statistical modeling of extreme values. Springer- Verlag, London.

Cox, D. R. Hinkley, D. V. 1974. Theoretical statistics. Chapman and Hall, London.

Efron, B. 1979. Bootstrap methods: Another look at the Jackknife. Ann. Stat. 7(1): 1-26.

Galambos, J. 1987. The asymptotic theory of extreme order statistics, Wiley, New York,

Goldberg, M. S., Burnett, R. T., Brook, J., Bailor, J. C., Valois, M. F. Vincent. R. 2001. Associations between daily cause-specific mortality and concentrations of ground- level ozone in Montreal, Quebec. American J. of Epidemiology 154- 817.

Gnedenko, B.V. 1943. Sur la distribution limite du terme maximum d'une sإrie alإatoire. Ann. Math. 44: 423-453.

Kim, S. Y. Lee, J. T., Hong, Y. C., Ahn, K. J. Kim, H. 2004. Determining the threshold effect of Ozone on daily mortality: an analysis of Ozone and mortality in Seoul, Korea, Environmental 1995-1999.

Pancheva, E. 1985. Limit theorems for extreme order statistics under nonlinear normalization. Lecture Notes in Mathematics 1155: 284-309.

Pickands, J. 1975. Statistical inference using extreme order statistics. Ann. Statist. 3: 119- 131.

Mohan, N.R. Ravi, S. 1992. Max domains of attraction of univariate and multivariate p-max stable laws. Theory Probab. Appl. 37: 632-643.

Nasri-Roudsari, D. 1999. Limit distributions of generalized order statistics under power normalization.Commun Stat Theory Methods 28(6):1379--1389.

Nigm, E. M. 2006. Bootstrapping extremes of random variables under power normalization. Test 15(1): 257-269.

Reiss, R. D. Thomas, M. 2003. Statistical analysis of extreme values from insurance, finance, Hydrology and other fields. Berlen: Birkhجuser Verlag.

Smith, R. L. 1985 Maximum likelihood estimation in a class of nonregular cases. Biometrika 72: 67-90.

Downloads

Published

07-01-2014