In-silico study of potential carboxylic acid derivatives as D-glutamate ligase inhibitors in Salmonella typhi
Keywords:
Anti-Salmonella, carboxylic acids, D-glutamate ligase, molecular docking, typhoid.Abstract
Salmonella typhi is food-borne as well as water-borne pathogen, which is the main cause of typhoid fever. This disease is affecting people in both developing and underdeveloped countries. The emergence of multidrug resistance in S. typhi has encouraged researchers towards targeting novel pathways. UDP-N-acetylmuramoyl-L-alanine: D-glutamate ligase enzyme is involved in cell wall synthesis of the bacterium. Studies have shown that two carboxylic acids; acetic acid and lactic acid, have anti-bacterial activity. Present in-silico study investigated the potential of acetic acid derivative (2,4-Dihydroxybenzyliminodiacetic acid) and lactic acid derivative (ammonium lactate) to inhibit the peptidoglycan synthesis. These derivatives showed good potential as inhibitors of target protein. These compounds can have a pharmaceutical application in drug development against the disease.
References
Akbas, E., Berber, I., Sener, A. & Hasanov, B. (2005).
Synthesis and antibacterial activity of 4-benzoyl-1-methyl-
-phenyl-1H-pyrazole-3-carboxylic acid and derivatives. Il
Farmaco, 60:23 -26.
Alakomi, H.-L., Skyttä, E., Saarela, M., Mattila-
Sandholm, T., Latva-Kala, K. et al. (2000). Lactic acid
permeabilizes gram-negative bacteria by disrupting the
outer membrane. Applied and Environmental Microbiology,
:2001 -2005.
Auger, G., Martin, L., Bertrand, J., Ferrari, P., Fanchon,
E. et al. (1998). Large-Scale Preparation, Purification,
and Crystallization of UDP-N-Acetylmuramoyl-l-Alanine:
d-Glutamate Ligase from Escherichia coli. Protein Expression
and Purification, 13:23- 29.
Black, R. E., Cisneros, L., Levine, M. M., Banfi, A.,
Lobos, H. et al. (1985). Case—control study to identify
risk factors for paediatric endemic typhoid fever in Santiago,
Chile. Bulletin of the World Health Organization, 63:899.
Blundell, T. L., Sibanda, B. L., Montalvão, R. W.,
Brewerton, S., Chelliah, V. et al. (2006). Structural
biology and bioinformatics in drug design: opportunities
and challenges for target identification and lead discovery.
Philosophical Transactions of the Royal Society of London
B: Biological Sciences, 361:413- 423.
Crump, J. A., Luby, S. P. & Mintz, E. D. (2004). The
global burden of typhoid fever. Bulletin of the World Health
Organization, 82:346 -353.
Edelman, R. & Levine, M. M. (1986). Summary of
an international workshop on typhoid fever. Reviews of
Infectious Diseases, 8:329- 349.
Effa, E. E., Lassi, Z. S., Critchley, J. A., Garner, P.,
Sinclair, D. et al. (2011). Fluoroquinolones for treating
typhoid and paratyphoid fever (enteric fever). Cochrane
Database Syst Reviews, 5:CD004530.
Firat, F., Arslan, A. K., Colak, C. & Harputluoglu, H.
(2016). Estimation of risk factors associated with colorectal
cancer: an application of knowledge discovery in databases.
Kuwait Journal of Science, 43:151 -161.
Lewis, K. (2013). Platforms for antibiotic discovery.
Nature Reviews Drug discovery, 12:37 1387-.
Lin, F., Vo, A., Phan, V., Nguyen, T., Bryla, D., Tran,
C. et al. (2000). The epidemiology of typhoid fever in the
Dong Thap Province, Mekong Delta region of Vietnam.
The American Journal of Tropical Medicine and Hygiene,
:644- 648.
Luby, S., Faizan, M., Fisher-Hoch, S., Syed, A., Mintz,
E. et al. (1998). Risk factors for typhoid fever in an endemic
setting, Karachi, Pakistan. Epidemiology and Infection,
:129- 138.
Morris, G. M. & Lim-Wilby, M. (2008). Molecular
docking. Molecular modeling of proteins, 365 -382.
Nagshetty, K., Channappa, S. T. & Gaddad, S. M.
(2009). Antimicrobial susceptibility of Salmonella typhi
in India. The Journal of Infection in Developing Countries,
:70 -73.
Niveshika, E. V., Mishra, A. K., Singh, A. K. & Singh,
V. K. (2016). Structural elucidation and molecular docking
of a novel antibiotic compound from Cyanobacterium
Nostoc sp. MGL001. Frontiers in Microbiology, 7.
Perdih, A., Hrast, M., Pureber, K., Barreteau, H.,
Grdadolnik, S. G. et al. (2015). Furan-based benzene
mono- and dicarboxylic acid derivatives as multiple
inhibitors of the bacterial Mur ligases (MurC–MurF):
experimental and computational characterization. Journal
of Computer-Aided Molecular Design, 29:541- 560.
Rhee, M.-S., Lee, S.-Y., Dougherty, R. H. & Kang,
D.-H. (2003). Antimicrobial effects of mustard flour
and acetic acid against Escherichia coli O157: H7,
Listeria monocytogenes, and Salmonella enterica serovar
Typhimurium. Applied and Environmental Microbiology,
:2959- 2963.
Rowe, B., Ward, L. R. & Threlfall, E. J. (1997).
Multidrug-resistant Salmonella typhi: a worldwide
epidemic. Clinical Infectious Diseases, 24:S106-S109.
Sinha, A., Sazawal, S., Kumar, R., Sood, S., Reddaiah,
V. P. et al. (1999). Typhoid fever in children aged less than
years. The Lancet, 354:734- 737.
Šušković, J., Kos, B., Beganović, J., Leboš-Pavunc,
A., Habjanič, K. et al. (2010). Antimicrobial activity–the
most important property of probiotic and starter lactic acid
bacteria. Food Technology and Biotechnology, 48:296 -307.
TomašIć, T., Zidar, N., ŠInk, R., Kovač, A., Blanot,
D. et al. (2011). Structure-based design of a new series
of D-glutamic acid based inhibitors of bacterial UDP-Nacetylmuramoyl-
L-alanine: D-glutamate ligase (MurD).
Journal of Medicinal Chemistry, 54:4600- 4610.
Tran, H., Bjune, G., Nguyen, B., Rottingen, J., Grais,
R. et al. (2005). Risk factors associated with typhoid
fever in Son La province, northern Vietnam. Transactions
of the Royal Society of Tropical Medicine and Hygiene,
:819- 826.
Van, Heijenoort, J. (2001). Recent advances in the
formation of the bacterial peptidoglycan monomer unit.
Natural Product Reports, 18:503- 519.
Vollaard, A. M., Ali, S., Van Asten, H. A., Widjaja,
S., Visser, L. G. et al. (2004). Risk factors for typhoid
and paratyphoid fever in Jakarta, Indonesia. JAMA,
:2607 -2615.