A population model of two-strains tumors with piecewise constant arguments

Authors

  • FATMA BOZKURT Department of Mathematics, Faculty of Education, Erciyes University, 38039 Kayseri, Turkey
  • İLHAN OZTURK Department of Mathematics, Faculty of Education, Erciyes University, 38039 Kayseri, Turkey

Keywords:

differential equation, difference equations, local stability, global stability, boundedness

Abstract

In this study, the population growth of the brain tumor GBM, is constructed such as( )( ( ) ( [ ] )) ( ) ( [ ] ) ( ) ( [ ] )( )( ( ) ( [ ] )) ( [ ] ) ( ) [ ]1 1 1 2 1 12 2 1 2 1 2d = ( ) rx t R x t x t x t y t d x t x tdd =r y t R y t y t x t y t d y( ) ( t )dx px tty t ytα α γβ β γ⎧ + − − ⎡ ⎤ − ⎡ ⎤ − ⎡ ⎤ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪⎪⎨⎪− − ⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦ − ⎡⎣ ⎤⎦ ⎪⎩(A)where t = 0 , the parameters 1 2 1 2 1 1 2 1 2 1 α ,α , β , β ,γ , p, d , d ,R , R , r and 2 r are positivereal numbers and [[t]] denotes the integer part of t∈[0,8) . System (A) explains a tumorgrowth, that produces after a specific time another tumor population with different growth rateand different treatment susceptibilities. The local and global stability of this model is analyzedby using the theory of differential and difference equations. Simulations and data of GBM givea detailed description of system (A) at the end of the paper.

References

Allen, L. 2007. An Introduction to Mathematical Biology, Pearson Prentice Hall, NJ.

Berkman, R., Clark, W., Saxena, A., Robertson, J., Oldfield, E. & Ali, I. 1992. Clonal composition of glioblastoma multiforme. Journal of Neurosurgery 77: 432-437.

Birkhead, B., Ranken, E., Gallivan, S., Dones, L., & Rubens, R. 1987. A mathematical model of the development of drug resistance to cancer chemotherapy, European Journal of Cancer and Clinical Oncology 23: 1421-1427.

Coldman, A. & Goldie, J. 1979. A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treatment Reports 63: 1727-1731.

Cooke, K. & Huang, W. 1991. In: Fink, A., Miller, R. & Kleman, W. (Eds.), A Theorem of George Seifert and an equation with State-Dependent Delay, Delay and Differential Equations. Pp. 65-77 World Scientific, Ames, Iowa.

Coons, S. & Johnson, P. 1993. Regional heterogeneity in the DNA content of human gliomas. Cancer, 72: 3052-3060.

De Vladar, H. & Gonzalez, J. 2004. Dynamic response of cancer under the influence of immunological activity and therapy. Journal of Theoretical Biology, 227: 335-348.

Gevertz, J. & Toquato, S. 2006. Modelig the effects of vasculature evolution on early brain tumor growth. Journal of Theoretical Biology, 243: 517-531.

Gibbons, C., M. R. S. Kulenoviæ, M., G. Ladas, G. & Voulov, H. 2002. On the Trichotomy Character of ( )( ) n n n n x + x + x A+ x + − = / 1 1 α β γ . J. Difference Equations and Applications, 8: 75-92.

Gopalsamy, K. & Liu, P. 1998. Persistence and Global Stability in a population model. Journal of Mathematical Analysis and Applications 224: 59-80.

Gurcan, F. & Bozkurt, F. 2009. Global stability in a population model with piecewise constant arguments.

Journal of Mathematical Analysis and Applications, 360(1): 334-342.

Holland, E.C. 2000. Glioblastoma multiforme: the termiator. Proceedings of the National Academy of Science, 97: 6242-6244.

Hoppensteadt, F.C. 2004. Cambridge Studies in Mathematical Biology: Mathematical methods of population biology. Cambridge University Press, Cambridge.

Liu, P. & Gopalsamy, K. 1999. Global stability and chaos in a population model with piecewise constant arguments. Applied Mathematics and Computation, 101: 63- 88.

Mansury, Y., Diggory, M., & Diesboeck, T. 2006. Evolutionary game theory in an agent-based brain tumor model: Exploring the `Genotype-Phenotype’ link. Journal of Theoretical Biology, 238: 146- 156.

May, R. 1975. Biological populations obeying difference equations: Stable points, stable cycles and chaos. J. Theoret. Biol., 51: 511-524.

May, R. & Oster, G. 1976. Bifurcations and dynamics complexity in simple ecological models. Amer. Nat., 110: 573-599.

Ozturk, I. & Bozkurt, F., 2011. Stability analysis of a population model with piecewise constant arguments. Nonlinear analysis: Real World Applications, 12(3): 1532-1545.

Panetta, J. 1998. A mathematical model of drug resistance: Heterogeneous tumors. Mathematical Biosciences, 147: 41-61.

Paulus, W. & Peiffer, J. 1989. Intratumoral histologic heterogeneity of gliomas. A quantitative study. Cancer, 64: 442-447.

Rubinow, S. 2002. Introduction to Mathematical Biology, Dover Publication, NY.

Schmitz, J., Kansal, A., & Torquato, S. 2002. A cellular Automaton of Brain Tumor Treatment and Resistance. Journal of Theoretical Medicine, 4(4): 223-239.

Yung, Y., Shapiro, J., & Shapiro, W. 1982. Heterogeneous chemosensitivities of subpopulations of human glioma cells in culture. Cancer Research, 42: 992-998.

Downloads

Published

14-06-2015