Generalized ratio-product-type estimator for variance using auxiliary information in simple random sampling
Keywords:
Generalized estimator for population variance, population variance estimator using two auxiliary variable information, ratio-product-type variance estimator, ratio-type variance estimator, transformed sample variances.Abstract
This paper suggests a new generalized ratio-product-type estimator for population variance of study variable utilizing information obtained from two auxiliary variables. Efficiency of the new estimator has been compared mathematically with the generalized ratio-product-type estimator based on information from auxiliary variable under simple random sampling without replacement. Empirically, the estimator proves more efficient than the usual unbiased estimator and some previously existing biased variance estimators under the derived conditions and for suitable choice of scalars and constants at which bias is also smaller in comparison. It is also worth-mentioning that all the estimators under discussion are the special cases of the
new generalized ratio-product-type estimator for population variance.
References
Ahmed, M. S., Raman, M. S. & Hossain, M. I. (2000).
Some competitive estimators of finite population variance
using multivariate auxiliary information. Information and
Management Sciences, 11(1):49- 54.
Arcos, A., Rueda, M., Martinez, M. D., Gonzalez, S.
& Y. R. (2005). Incorporating the auxiliary information
available in variance estimation. Applied Mathematics and
Computation, 160:387- 399.
Gujarati, D. N. & Sangeetha. (2007). Basic econometrics
(4th Ed.). New Delhi: TATA McGRAW HILL Companies.
Pp. 189.
Gupta, S. & Shabbir, J. (2008). Variance estimation in simple
random sampling using auxiliary information. Hacettepe
Journal of Mathematics and Statistcs, 37(1):57 -67.
Isaki, C. T. (1983). Variance estimation using auxiliary
information. Journal of the American Statistical Association,
:117- 123.
Jhajj, H. S., Sharma, M. K. & Grover, L. K. (2005). An
efficient class of chain estimators of population variance under
sub-sampling scheme. J. Soc.Japan Statist, 35(2):273- 286.
Kadilar, C. & Cingi, H. (2006). Ratio estimators for the
population variance in simple and stratified random sampling.
Applied Mathematics and Computation 173:1047- 1059.
Singh, H. P. & Solanki, R. S. (2013a). A new procedure
for variance estimation in simple random sampling using
auxiliary information. Stat Papers, 54:479- 497.
Singh, H. P. & Solanki, R. S. (2013b). Improved estimation
of finite population variance using auxiliary information.
Communicationsin Statistics - Theory and Methods,
:2718- 2730.
Subramani, J. & Kumarapandiyan, G. (2013). Estimation
of variance using known coefficient of variation and median
of an auxiliary variable. Journal of Modern Applied Statistical
Methods, 12 (1):58- 64.
Subramani, J. & Kumarapandiyan, G. (2012a). Variance
estimation using median of the auxiliary variable. International
Journal of Probabiility and Statistics, 1(3):62- 66.
Subramani, J. & Kumarapandiyan, G. (2012b). Variance
estimation using quartiles and their functions of an auxiliary
variable. International Journal of Statistics and Applications,
(5):67- 72.
Upadhyaya, L. N. & Singh, H. P. (1999) An estimator for
population variance that utilizes the kurtosis of an auxiliary
variable in survey sampling. Vikram Mathemat. Journal,
:14- 17.
Yadav, R., Upadhyaya, L. N., Singh, H. P. & Chatterjee,
S. (2013). A generalized family of transformed ratio-product
estimators for variance in sample surveys. Communications
in Statistics - Theory and Methods, 42:1839- 1850.