Finite difference methods for the generalized Huxley and Burgers-Huxley equations
Keywords:
The generalized Huxley equation, The generalized Burgers-Huxley equation, finite difference method, explicit exponential finite difference methodAbstract
In this paper, explicit exponential finite difference methods arepresented to solve the generalized forms of Huxley andBurgers-Huxley equations. These schemes allows to handle any valuesof $\delta$. The accuracy of the numerical solutions indicates thatthe methods are well suited for the solution of the generalizedHuxley and the generalized Burhgers-Huxley equations.References
X. Y. Wang, Z. S. Zhu, Y. K. Lu, Solitary wave solutions of the generalized
Burgers-Huxley equation, J. Phys. A: Math. Gen. 23 (1990)
-274.
I. Hashim, M. S. M. Noorani, B. Batiha, A note on the Adomian decomposition
method for the generalized Huxley Equation, Appl. Math.
Comput. 181 (2006) 1439-1445.
S. H. Hashemi, H. R. Mohammadi Daniali, D. D. Ganji, Numerical
simulation of the generalized Huxley equation by He’s homotopy perturbation
method, Appl. Math. Comput. 192 (2007) 157-161.
B. Batiha, M. S. M. Noorani, I. Hashim, Numerical simulation of the
generalized Huxley equation by He’s variational iteration method, Appl.
Math. Comput. 186 (2007) 1322-1325.
K. Hemida, M. S. Mohamed, Application of homotopy analysisi method
to fractional order generalized Huxley equation, J. Appl. Func. Analy.
( 2012) 367-372.
I. Hashim, M. S. M. Noorani, M. R. Said Al-Hadidi, Solving the generalized
Burgers-Huxley Equation using the Adomian decomposition
method, Math. Comput. Model. 43 (2006) 1404-1411.
M. Javidi, A numerical solution of the generalized Burger’s-Huxley equation
by pseudospectral method and Darvishi’s preconditioning, Appl.
Math. Comput. 175 (2006) 1619-1628.
M. Javidi, A numerical solution of the generalized Burger’s-Huxley equation
by spectral collocation method, Appl. Math. Comput. 178 (2006)
-344.
M. T. Darvishi, S. Kheybari, F. Khani, Spectral collocation method
and Darvishi’s preconditionings to solve the generalized Burgers-Huxley
equation, Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 2091-2103.
B. Batiha, M. S. M. Noorani, I. Hashim, Application of variational iteration
method to the generalized Burgers-Huxley equation, Chaos Soliton
Fract. 36 (2008) 660-663.
M. Sari, G. G¨urarslan, Numerical solutions of the generalized Burgers-
Huxley equation by a differential quadrature method, Math. Probl. Eng.
, doi: 10.1155/2009/370765.
A. J. Khattak, A computational meshless method for the generalized
Burger’s-Huxley equation, Appl. Math. Model. 33 (2009) 3218-3729.
M. Javidi, A. Golbabai, A new domain decomposition algorithm for
generalized Burger’s-Huxley equation based on Chebyshev polynomials
and preconditioning, Chaos Soliton Fract. 39 (2009) 849-857.
J. Biazar, F. Mohammadi, Application of differential transform method
to the generalized Burgers-Huxley equation, Appl. Appl. Math. 5 (2010)
-1740.
A. G. Bratsos, A fourth order improved numerical scheme for the generalized
Burgers-Huxley equation, American J. Comput. Math. 1 (2011)
-158.
˙I. C¸ elik, Haar wavelet method for solving generalized Burgers-Huxley
equation, Arab J. Math. Sci. 18 (2012) 25-37.
M. El-Kady, S. M. El-Sayed, H. E. Fathy, Development of Galerkin
method for solving the generalized Burger’s Huxley equation, Math.
Probl. Eng. 2013, doi: 10.1155/2013/165492.
A. M. Al-Rozbayani, Discrete Adomian decomposition method for solving
Burger’s-Huxley Equation, Int. J. Contemp. Math. Sci. 8 (2013)
-631.
M. C. Bhattacharya, An explicit conditionally stable finite difference
equation for heat conduction problems, Int. J. Num. Meth. Eng. 21
(1985) 239-265.
M. C. Bhattacharya, Finite difference solutions of partial differential
equations, Commun. Appl. Numer. Meth. 6 (1990) 173-184.
R. F. Handschuh, T. G. Keith, Applications of an exponential finitedifference
technique, Numer. Heat Transfer. 22 (1992) 363-378.
A. R. Bahadır, Exponential finite-difference method applied to
Korteweg-de Vries equation for small times, Appl. Math. Comput. 160
(2005) 675-682.
B. ˙Inan, A. R. Bahadır, An explicit exponential finite difference method
for the Burgers’ equation, European Int. J. Sci. Tech. 2 (2013) 61-72.
H. N. A. Ismail, K. Raslan, A. A. A. Rabboh, Adomian decomposition
method for Burger’s–Huxley and Burger’s–Fisher equations, Appl.
Math. Comput. 159 (2004) 291–301.