Generalized Bour’s theorem

Authors

  • ERHAN GÜLER Department of Mathematics,Faculty of Science,Bartın University, 74100 Bartın, Turkey
  • YUSUF YAYLI Department of Mathematics,Faculty of Science, Ankara University, 06100 Ankara, Turkey

Keywords:

Gauss map, gaussian curvature, helicoidal surface, mean curvature, rotational surface.

Abstract

We give the classical isometric minimal helicoidal and rotational surfaces using generalizedBour’s theorem in Euclidean 3-space. Furthermore, we investigate the minimality and havesame Gauss map of the surfaces.

References

Bour, E. 1862. Theorie de la deformation des surfaces. Journal de

l’ÊcolePolytechnique.22 (XXXIX): 1-148.

Do Carmo, M. P. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall,

Englewood Cliffs, New Jersey.

Do Carmo, M. P. & Dajczer, M. 1982. Helicoidal surfaces with constant mean

curvature. Tohoku Mathematical Journal, 34: 425-435.

Güler, E., Yaylı, Y. & Hacısalihoğlu, H. H. 2010. Bour’s theorem on Gauss map in

Euclidean 3-space. Hacettepe University Journal of Mathematics and Statistics,

(4): 515-525.

Ikawa, T. 2000. Bour’s theorem and Gauss map. Yokohama Mathematical Journal,

(2): 173-180.

Ji, F. & Kim, Y. H. 2013. Isometries between minimal helicoidal surfaces and rotation

surfaces in Minkowski space. Applied Mathematics and Computation, 220: 1-11.

Generalized Bour’s theorem 11

Kühnel, W. 2006. Differential Geometry Curves-Surfaces-Manifolds. AMS, second

edition, USA.

Martinez, A., Dos Santos, J. & Tenenblat, K. 2013. Helicoidal flat surfaces in

hyperbolic 3-space. Pacific Journal of Mathematics, 264 (1): 195-211.

Downloads

Published

04-02-2015