Generalized Bour’s theorem


  • ERHAN GÜLER Department of Mathematics,Faculty of Science,Bartın University, 74100 Bartın, Turkey
  • YUSUF YAYLI Department of Mathematics,Faculty of Science, Ankara University, 06100 Ankara, Turkey


Gauss map, gaussian curvature, helicoidal surface, mean curvature, rotational surface.


We give the classical isometric minimal helicoidal and rotational surfaces using generalizedBour’s theorem in Euclidean 3-space. Furthermore, we investigate the minimality and havesame Gauss map of the surfaces.


Bour, E. 1862. Theorie de la deformation des surfaces. Journal de

l’ÊcolePolytechnique.22 (XXXIX): 1-148.

Do Carmo, M. P. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall,

Englewood Cliffs, New Jersey.

Do Carmo, M. P. & Dajczer, M. 1982. Helicoidal surfaces with constant mean

curvature. Tohoku Mathematical Journal, 34: 425-435.

Güler, E., Yaylı, Y. & Hacısalihoğlu, H. H. 2010. Bour’s theorem on Gauss map in

Euclidean 3-space. Hacettepe University Journal of Mathematics and Statistics,

(4): 515-525.

Ikawa, T. 2000. Bour’s theorem and Gauss map. Yokohama Mathematical Journal,

(2): 173-180.

Ji, F. & Kim, Y. H. 2013. Isometries between minimal helicoidal surfaces and rotation

surfaces in Minkowski space. Applied Mathematics and Computation, 220: 1-11.

Generalized Bour’s theorem 11

Kühnel, W. 2006. Differential Geometry Curves-Surfaces-Manifolds. AMS, second

edition, USA.

Martinez, A., Dos Santos, J. & Tenenblat, K. 2013. Helicoidal flat surfaces in

hyperbolic 3-space. Pacific Journal of Mathematics, 264 (1): 195-211.