Generalized Bour’s theorem
Keywords:
Gauss map, gaussian curvature, helicoidal surface, mean curvature, rotational surface.Abstract
We give the classical isometric minimal helicoidal and rotational surfaces using generalizedBour’s theorem in Euclidean 3-space. Furthermore, we investigate the minimality and havesame Gauss map of the surfaces.References
Bour, E. 1862. Theorie de la deformation des surfaces. Journal de
l’ÊcolePolytechnique.22 (XXXIX): 1-148.
Do Carmo, M. P. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall,
Englewood Cliffs, New Jersey.
Do Carmo, M. P. & Dajczer, M. 1982. Helicoidal surfaces with constant mean
curvature. Tohoku Mathematical Journal, 34: 425-435.
Güler, E., Yaylı, Y. & Hacısalihoğlu, H. H. 2010. Bour’s theorem on Gauss map in
Euclidean 3-space. Hacettepe University Journal of Mathematics and Statistics,
(4): 515-525.
Ikawa, T. 2000. Bour’s theorem and Gauss map. Yokohama Mathematical Journal,
(2): 173-180.
Ji, F. & Kim, Y. H. 2013. Isometries between minimal helicoidal surfaces and rotation
surfaces in Minkowski space. Applied Mathematics and Computation, 220: 1-11.
Generalized Bour’s theorem 11
Kühnel, W. 2006. Differential Geometry Curves-Surfaces-Manifolds. AMS, second
edition, USA.
Martinez, A., Dos Santos, J. & Tenenblat, K. 2013. Helicoidal flat surfaces in
hyperbolic 3-space. Pacific Journal of Mathematics, 264 (1): 195-211.