Generalized constant ratio surfaces and quaternions

Authors

  • Selahattin Aslan
  • Yusuf Yayl?

Keywords:

Generalized constant ratio surfaces, kinematic, rotation matrices, real quaternions, unit quaternions.

Abstract

In this study, we show that the generalized constant ratio surfaces can be obtained by the quaternion product of a unitquaternion and a pure quaternion. Also, the quaternion product of the unit quaternion and the position vector of the generalized constant ratio surface as a pure quaternion is a generalized constant ratio surface. Then we give some results about the generalized constant ratio surfaces by using the quaternions.

References

Babaarslan, M. & Yayli, Y. (2012). A new approach to constant slope surfaces with quaternion. ISRN Geometry (ISRN GEOM.), Vol. 2012, Article ID 126358, DOI: 10.5402/2012/126358, 8 Pages.

Bekar, M. & Yayl, Y. (2013). Involutions of complexified quaternions

and split quaternions. Advances in Applied Clifford Algebras, 23, pp. 283-299.

Dillen, F. Fastenakels, J. Van der Veken, J. & Vrancken, L. (2007).

Constant angle surfaces in . Monatshefte fr Mathematik,

(2):89-96.

Dillen, F. & Munteanu, M.I. (2009). Constant angle surfaces in

Bulletin of the Brazilian Mathematical Society, 40(1):85-97.

Dldl, M. (2010). Two and three dimensional regions from homothetic motions. Applied Mathematics ENotes, 10:86-93.

Fu, Y. & Munteanu, M.I. (2014). Generalized constant ratio surfaces

in . Bulletin of the Brazilian Mathematical Society, 45(1):73-90.

Hamilton, W.R. (1844). On quaternions; or on a new system of

imaginaries in algebra. London, Edinburgh, and Dublin Philosophical Magazine and Journal of science, 25(3):489-495.

Koenderink, J. (1990). Solid shape, MIT Press, Cambridge, MA.

Munteanu, M.I. (2010). From golden spirals to constant slope surfaces. Journal of Mathematical Physics, 51(7), Article ID 073507, 9 pages.

Munteanu, M.I. & Nistor, A.I. (2009). A new approach on constant

angle surfaces in . Turkish Journal of Mathematics, doi:10.3906/mat-0802-32, 33(1):169-178.

Shoemake, K. (1985). Animating rotation with quaternion curves.

In Proceedings of the Proceedings of the 12th Annual Conference on

Computer Graphics and Interactive Techniques (SIG-GRAPH 85),

ACM, New York, NY, USA, vol. 19, pp. 245-254.

Ward, J.P. (1997). Quaternions and Cayley numbers algebra

and applications, Kluwer Academic Publishers, Dordrecht, The

Netherlands.

Downloads

Published

28-01-2017