Thermal decomposition kinetics of benzofuran derived polymer/organosilicate nanocomposites


  • Adnan Kurt Department of Chemistry, Faculty of Arts and Science, University of Adiyaman, 02040, Adiyaman/Turkey
  • Pınar Yilmaz Adiyaman University


Activation energy, benzofuran, polymer/silicate nanocomposites, reaction mechanism, thermal decomposition kinetics.


Benzofuran derived polymer poly(2-(5-bromo benzofuran-2-yl)-2-oxoethylmethacrylate)/organically modified montmorillonite nanocomposites were preparedvia in situ polymerization technique. Vinyl benzyl dimethyl hexadecyl ammoniumchloride was used as organic-modifier. X-ray diffraction analysis showed the silicatedispersion in the polymer matrix with an exfoliated structure.The thermal stabilitiesof nanocomposites were increased with loading organosilicate in the polymermatrix. The decomposition temperature of 5 wt% organosilicate nanocomposite at10% weight loss was approximately 14 °C higher than that of pure polymer. Kineticanalysis of the decomposition process in nanocomposites was evaluated from dynamicexperiments by means of Flynn-Wall-Ozawa and Coats-Redfern methods within 12%- 22% decomposition conversion range. Introduction of the silicate phase in polymerenhanced the apparent activation energy from 163.31 kJ/mol to 195.28 kJ/mol. Themechanism of thermal degradation for pure polymer in this conversion range probablyfollowed a deceleration type phase boundary controlled reaction (R3), whereas in caseof nanocomposites, it shifted to dimensional diffusion type (Dn).

Author Biography

Pınar Yilmaz, Adiyaman University

Department of Chemistry, Faculty of Science and Arts, University of Adiyaman


Banihashemi, A. & Abdolmaleki, A. (2004) Novel aromatic polyimides derived from benzofuro[2,3-b]

benzofuran-2,3,8,9-tetracarboxylic dianhydride (BBTDA). European Polymer Journal, 40:1629-

Benhacine, F., Yahiaoui, F. & Hadj-Hamou, A.S. (2014) Thermal stability and kinetic study of isotactic

polypropylene/Algerian bentonite nanocomposites prepared via melt blending. Journal of Polymers,


Bourbigot, S., Gilman, J.W. & Wilkie, C.A. (2004) Kinetic analysis of the thermal degradation of

polystyrene-montmorillonite nanocomposites. Polymer Degradation and Stability, 84:483-492.

Coats, A.W. & Redfern, J.P. (1964) Kinetic parameters from thermogravimetric data. Nature, 201:


Fan, X.W., Xia, C.J. & Advincula, R.C. (2003) Intercalation of polymerization initiators into

montmorillonite platelets: free radical vs. anionic initiator clays. Colloids and Surfaces A:

Physicochemical and Engineering Aspects, 219:75-86.

Flynn, J.H. & Wall, L.A. (1966) A quick, direct method for the determination of activation energy from

thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4:323–328.

Fraga, F. & Nunez, E.R. (2001) Activation energies for the epoxy system BADGE n=0/m-XDA obtained

using data from thermogravimetric analysis. Journal of Applied Polymer Science, 80:776-782.

Fu, X. & Qutubuddin, S. (2001) Polymer-clay nanocomposites: exfoliation of organophilic

montmorillonite nanolayers in polystyrene. Polymer, 42:807-813.

Garcia, N., Corrales, T., Guzman, J. & Tiemblo, P. (2007) Understanding the role of nanosilica particle

surfaces in the thermal degradation of nanosilicaepoly(methyl methacrylate) solution-blended

nanocomposites: From low to high silica concentration Polymer Degradation and Stability, 92:635-

Gilman, J.W., Jackson, C.L., Morgan, A.B., Harris, R. & Manias, E. et al. (2000) Flammability

properties of polymer-Layered-silicate nanocomposites.Polypropylene and polystyrene

nanocomposites. Chemistry of Materials, 12:1866-1873.

Hu, Y.H., Chen, C.Y. & Wang, C.C. (2004) Viscoelastic properties and thermal degradation kinetics of

silica/PMMA nanocomposites. Polymer Degradation and Stability, 84:545-553.

Katritzky, A.R., Fali, C.N. & Li, J.Q. (1997) General synthesis of polysubstitutedbenzo[b]furans. Journal

of Organic Chemistry, 62:8205-8209.

Kaya, E., Kurt, A. & Er, M. (2012) Thermal degradation behavior of methyl methacrylate derived

copolymer. Journal of Nanoscience and Nanotechnology, 12:8502-8512.

Koca, M., Dagdelen, F. & Aydogdu, Y. (2004) Thermal and optical properties of benzofuran-2-yl-3-

phenyl-3-methylcyclobutyl thiosemicarbazone. Materials Letters, 58:2901-2905.

Koca, M., Kurt, A., Kirilmis, C. & Aydogdu, Y. (2012) Synthesis, characterization, and thermal

degradation of novel poly(2-(5-bromo benzofuran-2-yl)-2-oxoethyl methacrylate). Polymer

Engineering and Science, 52:323-330.

Krishna, S.V. & Pugazhenthi, G. (2011) Properties and thermal degradation kinetics of polystyrene/

organoclay nanocomposites synthesized by solvent blending method: Effect of processing conditions

and organoclay loading. Journal of Applied Polymer Science, 120:1322-1336.

Kurt, A. & Koca, M. (2014) Blending of poly(ethyl methacrylate) with poly(2-hydroxy-3-phenoxypropyl

methacrylate): Thermal and optical properties. Arabian Journal for Science and Engineering,


Kurt, A. & Koca, M. (2015) Optical properties of poly(2-(5-bromo benzofuran-2-yl)-2-oxoethyl

methacrylate)/organoclay nanocomposites. Arabian Journal for Science and Engineering, doi:


Kurt, A. (2009) Thermal decomposition kinetics of poly(nButMA-b-St) diblock copolymer synthesized

by ATRP. Journal of Applied Polymer Science, 114:624-629.

Lee, M.H., Dan, C.H., Kim, J.H., Cha, J. & Kim, S. et al. (2006) Effect of clay on the morphology and

properties of PMMA/poly(styrene-co-acrylonitrile)/clay nanocomposites prepared by melt mixing.

Polymer, 47:4359-4369.

Leszczyńska, A., Njuguna, J., Pielichowski, K. & Banerjee, J.R. (2007) Polymer/montmorillonite nanocomposites with improved thermal properties. Part II: Thermal stability of montmorillonite

nanocomposites based on different polymeric matrixes. Thermochimica Acta, 454:1–22.

Li, L.Q., Guan, C.X., Zhang, A. Q., Chen, D.H. & Qing, Z.B. (2004) Thermal stabilities and the thermal

degradation kinetics of polyimides. Polymer Degradation and Stability, 84:369-373.

Li, S.D., Peng, Z., Kong, L.X. & Zhong, J.P. (2006) Thermal degradation kinetics and morphology of

natural rubber/silica nanocomposites. Nanoscience and Nanotechnology, 6:541-546.

Madejova, J. & Komadel, P. (2001) Baseline studies of the clay minerals society source clays: Infrared

methods. Clays and Clay Minerals, 49:410-432.

Madurai, S.L., Joseph, S.W., Mandal, A.B., Tsibouklis, J. & Reddy, B.S.R. (2011) Intestine-specific,

oral delivery of captopril/montmorillonite: Formulation and release kinetics. Nanoscale Research

Letters, 6:15.

Ozawa, T. (1986) Applicability of Friedman plot. Journal of Thermal Analysis, 31:547–551.

Panwar, A., Choudhary, V. & Sharma, D.K. (2011) A review:polystyrene/clay nanocomposites. Journal

of Reinforced Plastics and Composites, 30:446-459.

Pokladko, M., Sanetra, J., Gondek, E., Bogdal, D. & Niziol, J. et al. (2008) Synthesis and polymerisation

of novel methacrylates with carbazolyl and benzofuranyl pendant groups for photovoltaic

applications. Molecular Crystals and Liquid Crystals, 484:701-710.

Polshettiwar, V. & Varma, R.S. (2007) Greener and sustainable approaches to the synthesis of

pharmaceutically active heterocycles. Current Opinion in Drug Discovery & Development,


Vyazovkin, S., Dranca, I., Fan, X. & Advincula, R. (2004) Kinetics of the thermal and thermo-oxidative

degradation of a polystyrene-clay nanocomposites. Macromolecular Rapid Communications,


Xu, J., Nie, G., Zhang, S., Han, X. & Pu, S. et al. (2005) Electrosyntheses of poly(2,3-benzofuran) films

in boron trifluoride diethyl etherate containing poly(ethylene glycol) oligomers. European Polymer

Journal, 41:1654-1661.

Zhang, H., Guo, E., Fang, Y., Ren, P. & Yang, W. (2009) Synthesis and optoelectronic properties of

alternating benzofuran/terfluorene copolymer with stable blue emission. Journal of Polymer

Science: Part A: Polymer Chemistry, 47:5488-5497.

Zhang, W.A., Chen, D.Z., Xu, H.Y., Shen, X.F. & Fang, Y.E. (2003) Influence of four different types of

organophilic clay on the morphology and thermal properties of polystyrene/clay nanocomposites

prepared by using the γ-ray irradiation technique. European Polymer Journal, 39:2323–2328.