Three New Weaker Notions of Fuzzy Open Sets and Related Covering Conceps
Keywords:
Fuzzy compactness, fuzzy Lindelofness, -topology, Q-neighborhood, -open sets.Abstract
A subset A of an ordinary topological space (X,T) is ω-open <cite>Hdeib1</cite> (resp. N-open <cite>alomari3</cite>) if for each x∈A, there exists U∈T such that x∈U and U-A is countable (resp. finite). In this work, we extend ω-open and N-open notions to include L-topological spaces, where L is an F-lattice, and we introduce a third notion of L-sets weaker than both of them. For a given L-topological space, the new notions give us three new finer L-topological spaces, which can help us to increase our understanding of this L-topological space. By means of these new notions in L-topological spaces, several types Chang's compactness, and Wong's Lindelöfness will be introduced. We make many comparisons between the new notions, and between these notions and some other related concepts. Several characterizations of the new concepts are given and two characterizations of Wong's Lindelöfness concept are given.References
Al Ghour, S. (2006). Some generalizations of paracompactness.
Missouri Journal of Mathematical Sciences, 18(1):64-77. doi:
1155/2007/16292
Al-Hawary, T. & Al-Omari, A. (2006a). De compositions of continuity. Turkish Journal of Math ematics, 30(2):187195.
Al-Hawary, T. & Al-Omari, A. (2006b). Be tween open and -open
sets. Questions Answers General Topology, 24(2):67-78.
Al-Hawary, T. (2008). Fuzzy -open sets. Bul letin of the Korean
Mathematical Society, 45(4):749-755.
Al-Omari, A. & Noorani, M.S.M. (2007a). Regular generalized
-closed sets. International Journal of Mathematics and Mathematical
Sci ences, Volume 2007: Article ID 16292. doi: 10.1155/2007/16292
Al-Omari, A. & Noorani, M.S.M. (2007b). Contra- -continuous
and almost contra- -continuous. International Journal of Mathematics and Mathematical Sciences, Volume 2007: Article ID 40469. doi:10.1155/2007/40469
Al-Omari, A., Noiri, T. & Noorani, M.S.M. (2009a). Characterizations
of strongly compact spaces. International Journal of Mathematics
and Mathematical Sciences, Volume 2009: Article ID 573038. doi:
1155/2009/573038
Al-Omari, A., Noiri, T. & Noorani, M.S.M. (2009b). Weak and strong
forms of -continuous functions. International Journal of Mathematics
and Mathematical Sciences, Volume 2009: Article ID 174042. doi:
1155/2009/174042
Al-Omari, A. & Noorani, M.S.M. (2009). New topology and
characterization of compact spaces. Proceedings of the 5th Asian
Mathematical Con ference. The Putra World Trade Center, Kuala
Lumpur, Malaysia.
Al-Zoubi, K.Y. (2005). On generalized - closed sets. International
Journal of Mathematics and Mathematical Sciences, 13:2011-2021.
Azad, K.K. (1981). On fuzzy semicontinuity, fuzzy almost continuity
and fuzzy weakly continuity. Journal of Mathematical Analysis and
Applications, 82(1):14-32.
Aygn, H. (2000). -compactness in -fuzzy topological spaces.
Fuzzy Sets and Systems, 116(3):317-324. doi: 10.1016/S0165-
(98)00345 5
Chang, C.L. (1968). Fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 24:182-190.
Chauhan, S., Kutukcu, S., Dhiman, N. & Ku mar, S. (2014).
Variants of R-weakly commuting mappings and common fixed point
theorems in in tuitionistic fuzzy metric spaces. Kuwait Journal of
Science, 41(2):49-64.
Cho, S.H. & Lee, G.Y. (2005). A note on regu lar semiopen L-sets and S*-closed spaces. Fuzzy Sets and Systems, 149(3):493-500.
Dang, S., Behera, A. & Nanda, S. (1994). On fuzzy weakly semicontinuous functions. Fuzzy Sets and Systems, 67(2):239-245. doi:10.1016/0165 0114(94)90091-4
Davvaz, B. & Leoreanu-Fotea, V. (2014). Triangular fuzzy sub
?-semihypergroups in ?-semihypergroups. Kuwait Journal of Science, 41(1):93-106.
Davvaz, B. & Hassani Sadrabadi, E. (2014). On Atanassovs
intuitionistic fuzzy grade of the di rect product of two hypergroupoids. Kuwait Journal of Science, 41(3):47-61.
Et, M., Tripathy, B.C. & Dutta, A.J. (2014). On pointwise statistical
convergence of order of sequences of fuzzy mappings. Kuwait Journal of Sci ence, 41(3):17-30.
Fora, A.A. (1989). Separation axioms for fuzzy spaces. Fuzzy Sets and Systems, 33(1):59-75. doi: 10.1016/0165-0114(89)90217-0
Ganguly, S. & Saha, S. (1986). A note on semi-open sets in fuzzy
topological spaces. Fuzzy Sets and Systems, 18(1):83-96. doi:
1016/0165 0114(86)90029-1
Ghosh, B. (1990). Semi-continuous and semi-closed mappings
and semi-connectedness in fuzzy setting. Fuzzy Sets and Systems,
(3):345-355. doi: 10.1016/0165-0114(90)90008-T
Hdeib, H.Z. (1982). -closed mappings. Revista Colombiana de
Mathematicas, 16(1-2):65-78.
Hdeib, H.Z. (1989). -continuous functions. Di rasat Journal 16:136-
Hhle, U. (1991). Special memorial volume second issue:
mathematical aspects of fuzzy set the ory. Fuzzy Sets and Systems,
(2):253-407.
Hhle, U., Rodabaugh, S.E. & ostak, A. (1995). Special issue on
fuzzy topology. Fuzzy Sets and Systems, 73(1):1183.
Hhle, U. & ostak, A. (1999). Axiomatic foun dations of fixed-basis
fuzzy topology. In: Hhle, U. & Rodabaugh, S. E. (Ed.). Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The Hand books of Fuzzy Sets Series. Pp. 123-273. Kluwer Academic Publishers, Dordrecht.
Hhle, U. (2001). Many valued topology and its applications. Kluwer
Academic Publishers, Boston. Pp. 382.
Liu, Y.M. & Luo, M.K. (1997). Fuzzy topology. World Scientific
Publishing, Singapore. Pp. 353.
Mukherjee, M.N. & Sinha, S.P. (1989a). Irres olute and almost open
functions between fuzzy topo logical spaces. Fuzzy Sets and Systems,29(3):381-388. doi: 10.1016/0165-0114(89)90050-X
Mukherjee, M.N. & Sinha, S.P. (1989b). On some weaker forms
of fuzzy continuous and fuzzy open mappings on fuzzy topological
spaces. Fuzzy Sets and Systems, 32(1):103-114. doi: 10.1016/0165-0114(89)90091-2
Mukherjee, A. (1999). Fuzzy totally continuous and totally semi continuous functions. Fuzzy Sets and Systems, 107(2):227-230. doi: 10.1016/S0165 0114(97)00320-5
Pant, B.D., Chauhan, S., Cho, Y.J. & Eshaghi-Gordji, M. (2015).
Fixed points of weakly compatible mappings in fuzzy metric spaces.
Kuwait Journal of Science, 42(2):107-127.
Rodabaugh, S.E., Klement, E.P. & Hhle, U. (1992). Applications
of category theory to fuzzy subsets. Kluwer Academic Publishers,
Dordrecht. Pp. 398.
Rodabaugh, S.E. & Klement, E.P. (2003). Topological and algebraic
structures in fuzzy sets: A handbook of recent developments in the
Mathe matics of fuzzy sets. Kluwer Academic Publishers, Dordrecht.
Pp. 467.
Sarsak, M.S. (2003). -almost Lindelf spaces. Questions Answers
General Topology, 21(1):2735.
Sen, M. & Roy, S. (2013). On paranormed type fuzzy I-convergent
double multiplier sequences. Kuwait Journal of Science, 40(1):1-12.
Wang, G.J. (1988). Theory of L-Fuzzy topological spaces. Shaanxi
Normal University Press, Xian (in Chinese).
Wong, C.K. (1973). Covering properties of fuzzy topological spaces.
Journal of Mathematical Analysis and Applications, 43:697-704.
Zulfiqar, M. (2014). Characterizations of ( )-fuzzy fantastic
ideals in BCI-algebras. Kuwait Journal of Science, 41(1):35-64.
Zulfiqar, M. & Shabir, M. (2015). Characterizations of
-interval valued fuzzy H-ideals in BCK-algebras. Kuwait Journal of
Science, 42(2):42-66.