Norms and compactness of operators on absolute weighted mean summable series
Keywords:
Absolute weighted summability, bounded operator, compact operator, Hausdorff measure of non compactness, matrixtrans formations.Abstract
In a recent paper [16], we characterized the classes of triangular matrix transformations mapping the spaces INpI and INqIk into the spaces INqIk and INqI, respectively, where the space INpIk, of series summable by absolute summability method. In the present paper we show that each element of these classes corresponds to a bounded linear operators, and determine exactly or obtain estimates for their norms and those in some well konown classes. Also, we characterized compact opğerators in these classes by using Housdorff measue noncompactness.References
Altin, Y., Et, M. & Tripathy, B.C. (2004). The sequence space
on seminormed spaces, Applied Mathematics and
Computation, 154:423-430.
Bor, H. & Thorpe, B. (1987). On some absolute summability methods,
Analysis, 7(2):145-152.
Bosanquet, L.S. (1950). Review of G. Sunouchis paper (1949), Notes
on Fourier Analysis, 18, absolute summability of series with constant
terms, Tohoku Mathematical Journal, 1:57-65, Mathematical Reviews
MR 0034861 (11,654b).
Flett, T.M. (1957). On an extension of absolute summability and some
theorems of Littlewood and Paley, Proceedings London Mathematical
Society, 7:113-141.
Kuttner, B. (1985). Some remarks on summability factors, Indian
Journal of Pure and Applied Mathematics, 16(9):1017-1027.
Maddox, I.J. (1970). Elements of Functional Analysis, Cambridge
University Press, London, New York.
Malkowsky, E. & Rako?evi?, V. (2000). An introduction into the
theory of sequence space and measures of noncompactness, Zbornik
Radova (Beogr), 9(17):143-234.
Malkowsky, E. & Rako?evi?, V. (2007). On matrix domain of triangles,
Applied Mathematics and Computation, 189(2):1146-1163.
Mazhar, S.M. (1971). On the Absolute summability factors of infinite
series, Tohoku Mathematical Journal, 23:433-451.
Mehdi, M.R. (1960). Summability factors for generalized absolute
summability, Proceedings London Mathematical Society, 10:180-200.
McFadden, L. (1942). Absolute Nrlund summability, Duke
Mathematics Journal, 9:168-207.
Mohapatra R.N. & Das, G. (1975). Summability factors for lowersemi
matrix transformations, Monatshefte fr Mathematika, 79:307-
Orhan C. & Sarigol M.A. (1993). On absolute weight demean
summability, Rocky Mountain Journal of Mathematics, 23(3):1091
Rako?evi?, V. (1998). Measures of noncompactness and some
applications, Filomat, 12:87-120.
Sar?gl, M.A. (1991). Necessary and sufficient conditions for the
equivalence of the summability methods and , Indian
Journal of Pure and Applied Mathematics, 22(6):483489.
Sar?gl, M.A. (1993). A note on summability, Studia Scientiarum
Mathematicarum Hungarica, 28:395-400.
Sar?gl, M.A. (2011). Matrix transformations on fields of absolute
weighted mean summability, Studia Scientiarum Mathematicarum
Hungarica, 48(3):331-341.
Sar?gl, M.A. & Bor H. (1995). Characterization of absolute
summability factors, Journal of Mathematical Analysis and Applications,
:537545.
Sar?gl, M.A. (2010). On the local properties of factored Fourier series,
Applied Mathematics and Computation, 216:33863390.
Sar?gl, M.A. (2015). Extension of Mazhars theorem on summability
factors, Kuwait Journal of Sciences, 42(3):28-35.
Sulaiman, W.T. (1992). On summability factors of infinite series,
Proceedings of the American Mathematical Society, 115:313-317.
Stieglitz, M. & Tietz, H. (1977) Matrix transformationen von
Folgenraumen Eine Ergebnisbersicht, Mathematische Zeitschrift,
:1-16.
Sunouchi, G. (1949). Notes on Fourier Analysis, 18, absolute
summability of a series with constant terms, Tohoku Mathematical
Journal, 1:57-65.