Norms and compactness of operators on absolute weighted mean summable series

Authors

  • Mehmet A. Sarigol Dept. of Mathematics, University of Pamukkale, 20007, Denizli, Turkey

Keywords:

Absolute weighted summability, bounded operator, compact operator, Hausdorff measure of non compactness, matrixtrans formations.

Abstract

In a recent paper [16], we characterized the classes of triangular matrix transformations mapping the spaces INpI and INqIk into the spaces INqIk and INqI, respectively, where the space INpIk, of series summable by absolute summability method. In the present paper we show that each element of these classes corresponds to a bounded linear operators, and determine exactly or obtain estimates for their norms and those in some well konown classes. Also, we characterized compact opğerators in these classes by using Housdorff measue noncompactness.

Author Biography

Mehmet A. Sarigol, Dept. of Mathematics, University of Pamukkale, 20007, Denizli, Turkey

Mathematics

References

Altin, Y., Et, M. & Tripathy, B.C. (2004). The sequence space

on seminormed spaces, Applied Mathematics and

Computation, 154:423-430.

Bor, H. & Thorpe, B. (1987). On some absolute summability methods,

Analysis, 7(2):145-152.

Bosanquet, L.S. (1950). Review of G. Sunouchis paper (1949), Notes

on Fourier Analysis, 18, absolute summability of series with constant

terms, Tohoku Mathematical Journal, 1:57-65, Mathematical Reviews

MR 0034861 (11,654b).

Flett, T.M. (1957). On an extension of absolute summability and some

theorems of Littlewood and Paley, Proceedings London Mathematical

Society, 7:113-141.

Kuttner, B. (1985). Some remarks on summability factors, Indian

Journal of Pure and Applied Mathematics, 16(9):1017-1027.

Maddox, I.J. (1970). Elements of Functional Analysis, Cambridge

University Press, London, New York.

Malkowsky, E. & Rako?evi?, V. (2000). An introduction into the

theory of sequence space and measures of noncompactness, Zbornik

Radova (Beogr), 9(17):143-234.

Malkowsky, E. & Rako?evi?, V. (2007). On matrix domain of triangles,

Applied Mathematics and Computation, 189(2):1146-1163.

Mazhar, S.M. (1971). On the Absolute summability factors of infinite

series, Tohoku Mathematical Journal, 23:433-451.

Mehdi, M.R. (1960). Summability factors for generalized absolute

summability, Proceedings London Mathematical Society, 10:180-200.

McFadden, L. (1942). Absolute Nrlund summability, Duke

Mathematics Journal, 9:168-207.

Mohapatra R.N. & Das, G. (1975). Summability factors for lowersemi

matrix transformations, Monatshefte fr Mathematika, 79:307-

Orhan C. & Sarigol M.A. (1993). On absolute weight demean

summability, Rocky Mountain Journal of Mathematics, 23(3):1091

Rako?evi?, V. (1998). Measures of noncompactness and some

applications, Filomat, 12:87-120.

Sar?gl, M.A. (1991). Necessary and sufficient conditions for the

equivalence of the summability methods and , Indian

Journal of Pure and Applied Mathematics, 22(6):483489.

Sar?gl, M.A. (1993). A note on summability, Studia Scientiarum

Mathematicarum Hungarica, 28:395-400.

Sar?gl, M.A. (2011). Matrix transformations on fields of absolute

weighted mean summability, Studia Scientiarum Mathematicarum

Hungarica, 48(3):331-341.

Sar?gl, M.A. & Bor H. (1995). Characterization of absolute

summability factors, Journal of Mathematical Analysis and Applications,

:537545.

Sar?gl, M.A. (2010). On the local properties of factored Fourier series,

Applied Mathematics and Computation, 216:33863390.

Sar?gl, M.A. (2015). Extension of Mazhars theorem on summability

factors, Kuwait Journal of Sciences, 42(3):28-35.

Sulaiman, W.T. (1992). On summability factors of infinite series,

Proceedings of the American Mathematical Society, 115:313-317.

Stieglitz, M. & Tietz, H. (1977) Matrix transformationen von

Folgenraumen Eine Ergebnisbersicht, Mathematische Zeitschrift,

:1-16.

Sunouchi, G. (1949). Notes on Fourier Analysis, 18, absolute

summability of a series with constant terms, Tohoku Mathematical

Journal, 1:57-65.

Downloads

Published

17-11-2016