Some results on Laplace-Stieltjes transform

Authors

  • L. GALU Centro de Investigación de Matemática Aplicada (CIMA), Facultad de Ingeniería, Universidad del Zulia, Maracaibo, Venezuela
  • H. PRADO Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago, Chile Casilla 307, Correo 2 Santiago, Chile
  • S. KALLA Department of Computer Engineering, Vyas Institutes of Higher Education, Jodhpur, India

Keywords:

Laplace-Stieltjes, transform, convolution, integrals.

Abstract

Two general theorems on Laplace-Stieltjes transform are established. One theorem is a generalized convolution theorem, while the second is a generalized Parseval theorem for a operator with kernel k(s,t). Several special cases can be derived from these theorems. One section is devoted to applications of these theorems to evaluate some integrals.

References

Arendt, W., Batty, C. J. K., Hieber, M. Neubrander, F. 2001. Vector valued Laplace transform and Cauchy problems. Birkhج user Verlag, Berlin.

Ben-Nakhi, Y. Kalla, S. L. 2003. Boundary value problems of temperature fields in oil strata. Applied Mathematics and Computation 146: 105-119.

Boyadjiev, L., Kamenov, O. Kalla, S. L. 2005. On the Lauwerier formulation of the temperature field problem in oil strata. International Journal of Mathematics and Mathematical Sciences 10: 1577-1588.

Erdإlyi, A. 1953. Higher Transcendental Functions, Vol. 1. McGraw-Hill, New York.

Feller, W. 1971. An Introduction to Probability Theory and Its Applications. John Wiley and Sons, New York.

Galuإ, L., Kalla, S. L. Al-Saqabi, B. 2007. Fractional extensions of the temperature field problems in oil strata. Applied Mathematics and Computation 186: 35-44.

Gradshteyn, I. S. Ryzhik, I. M. 1965. Tables of Integrals, Series and Products. Academic Press, New York.

Kalla, S. L. 1970. Some generalized theorems on integral transforms. Notas Matemؤticas 8: 1-6.

Prudnikov, A. P., Brychkov, Yu. Marichev, O. I. 1992. Integrals and Series. Gordon and Breach, Vol. 1, New York.

Ridout, M. S. 2009. Generating random numbers from a distribution specified byits Laplace transform, Statistics and Computing 19 (4): 439-450.

Saxena, R. K. Kalla, S. L. 2008. On the solution of certain fractional kinetic equations. Applied Mathematics and Computation 199: 504-511.

Saxena, R. K., Saxena, R. Kalla, S. L. 2010. Computational solution of a fractional generalization of Schrخdinger equation occurring in quantum mechanics. Applied Mathematics and Computation 216: 1412-1417.

Widder, D.V. 1941. The Laplace Transform. Princeton University Press, Princeton.

Downloads

Published

26-09-2013