Organic geochemistry and mineralogical characterization of the Paleocene Ranikot Formation shales in selected areas of Southern Indus Basin Pakistan

DOI: 10.48129/kjs.10413

Authors

  • Hussain Asghar nstitute of Geology University of Azad Jammu & Kashmir Muzaffarabad, Azad Kashmir Pakistan
  • Saeed Abbas Oil & Gas Development Company Limited (OGDCL), Pakistan
  • Muhammad Sabir Khan Institute of Geology University of Azad Jammu & Kashmir Muzaffarabad, Azad Kashmir Pakistan
  • Samina Jahandad Hydrocarbon Development Institute of Pakistan (HDIP)
  • Muhammad Hanif National Centre of Excellence in Geology (NCEG), University of Peshawar, Pakistan
  • Muhammad Saleem Mughal Institute of Geology University of Azad Jammu & Kashmir Muzaffarabad, Azad Kashmir Pakistan
  • Gulfam Hussain University of Chinses Academy of Sciences, Beijing, 100101, China

DOI:

https://doi.org/10.48129/kjs.10413

Abstract

In this paper we described the geochemical and mineralogical characterization of Ranikot Formation shales in the southern Indus Basin of Pakistan. Southern Indus Basin is one of the promising regions in Pakistan as a commercially producing oil and gas perspective. Therefore, this research focuses on the Ranikot Formation shales from the southern Indus Basin Pakistan. Based on total organic carbon (TOC), Rock-Eval (RE) pyrolysis, organic petrography, gas chromatography-mass spectrometry (GC-MS) and X-ray diffraction (XRD) analyses, the organic geochemical and mineralogical characterization of the Ranikot Formation shales were carried out. The average total organic carbon (TOC) of Ranikot shale is 4.6 wt. % indicating very good source rock.  The RE results imply that the type of kerogen in Ranikot shale are Types III/IV. More clear evidence about kerogen Type came from maceral analyses of the Ranikot shales. The maceral data suggest that Type of kerogen present in Ranikot shale is dominantly Types II-III, with the minor occurrence of Type IV. The vitrinite reflectance, pyrolysis Tmax and methylphenanthrene indices values indicate that the Ranikot shales are immature for hydrocarbon generation. The normal alkane data reflect that marine macrophytes, algae and land plants were contributed to the organic matter of Ranikot shales. Dibenzothiophene/phenanthrene ratio 0.11 and phytane/n-C18 ratio 0.53, pyrite and glauconite elucidate that depositional environment of the Ranikot shale is marine.

The x-ray diffraction (XRD) analysis of the shale from Ranikot Formation revealed that it is brittle shale and dominated by 39.5 wt. % to 50.9 wt. % quartz. The current research, an integration with US EIA report delineated the Ranikot Formation influential target as a shale gas resource.

Author Biographies

Hussain Asghar, nstitute of Geology University of Azad Jammu & Kashmir Muzaffarabad, Azad Kashmir Pakistan

 

 

Saeed Abbas, Oil & Gas Development Company Limited (OGDCL), Pakistan

 

 

Muhammad Sabir Khan, Institute of Geology University of Azad Jammu & Kashmir Muzaffarabad, Azad Kashmir Pakistan

 

 

Samina Jahandad, Hydrocarbon Development Institute of Pakistan (HDIP)

 

 

Muhammad Hanif, National Centre of Excellence in Geology (NCEG), University of Peshawar, Pakistan

 

 

Muhammad Saleem Mughal, Institute of Geology University of Azad Jammu & Kashmir Muzaffarabad, Azad Kashmir Pakistan

 

 

Gulfam Hussain, University of Chinses Academy of Sciences, Beijing, 100101, China

 

 

References

Abbassi, S., Edwards, D.S., George, S.C., Volk, H., Mahlstedt, N., Primio, R., Horsfield, B. (2016). Petroleum potential and kinetic models for hydrocarbon generation from the upper cretaceous to Paleogene latrobe Group coals and shales in the Gippsland basin, Australia. Org. Geochem. 91, 54e67.

Bacon, C. A., Calver, C. R., Boreham, C. J., Leaman, D. E., Morrison, K. C., Revill, A. T., Volkman, J. K. (2000). The petroleum potential of onshore Tasmania-a review. Geological Survey Bulletin 71-93.

Biswas, S. K. (1982). Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin. American Association of Petroleum Geologists 66, 1497-1513.

Boreham, C. J., Crick, I. H., Powell. T. G. (1988). Alternative calibration of the methylphenanthrene index against vitrinite reflectance: application to maturity measurements on oils and sediments. Organic Geochemistry 12, 289-294.

Bowker, K. A. (2002). Recent development of the Barnett Shale play, Fort Worth Basin (extended abs.): Innovative gas exploration concepts, October 1, 2002, Denver, Colorado, 16 p.

Cheema, M. R., Raza, S. M., Ahmed, H., Shah, S. M. (1977). Cenozoic, Stratigraphy of Pakistan.

Connan, J., Bouroullec, J., Dessort, D., Albrecht, P. (1986). The microbial input in carbonate-anhydrite facies of a sabkha paleoenvironment from Gutemala: a molecular approach. Organic Geochemistry 10, 29-50.

Cranwell, P. A. (1977). Organic geochemistry of Cam Loch (Sutherland) sediments. Chemical Geology 20, 205-221.

Dembicki, H. (2009). Three common source rock evaluation errors made by geologists during prospect or play appraisals. AAPG (Am. Assoc. Pet. Geol.) Bull. 93, 341–356.

Eglinton, G., Hamilton, R. J. (1967). Leaf epicuticular waxes. Science 156, 1322-1335.

Energy Information Administration (2015). Technically recoverable shale oil and shale gas resources: An Assessment of 137 shale formations in 41 Countries outside the United States.

Farah, A., Lawrence, D., DeJong, K. A. (1984). An overview of the Tectonics of Pakistan, in Haq, B.U., and Milliman, J.D., Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan. Van Nostrand Reinhold Company 161-176.

Ficken, K. J., Li, B., Swain, D.L., Eglinton, G. (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry 31, 745-749.

Gas Research Institute (1991). Formation evaluation technology for production enhancement: Log, core, and geochemical analyses in Barnett Shale, Mitchell Energy Corp., Thomas P. SimsNo.2, Wise County, Texas: Gas Research Institute Report No. 5086213-1390, 125 p.

Ghori, K.A.R., Haines, P.W. (2007). Paleozoic petroleum systems of the canning basin, Western Australia, Search Discov.

Hakimi, M.H., Ahmed, A.F. (2016). Petroleum source rock characterization and hydrocarbon generation modeling of the Cretaceous sediments in the Jiza sub-basin, eastern Yemen. Mar. Pet. Geol. 75, 356-373.

Hughes, W. B., Holba, A. G., Dzou, L. I. P. (1995). The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimica et Cosmochimica Acta 59, 3581-3598.

International Centre for Diffraction Data (2001). Powder Diffraction File USA.

Jarvie, D. M. (1991). Total Organic Carbon (TOC) Analysis in Treatise of Petroleum Geology: Handbook of Petroleum Geology: Source and Migration Processes and Evaluation Techniques, Ed. R.K. Merrill. AAPG., 113-118.

Josh, M., Esteban, L., Delle Piane, C., Sarout, J., Dewhurst, N., Clennell, B. (2012). Laboratory characterization of shale properties. J. Pet. Sci. Eng. 88e89, 107e124.

Killops, S.D., Killops, V.J. (2005). Introduction to Organic Geochemistry, second ed. Blackwell Publishing Limited, U.K.

Martineau, D. F. (2001). Newark East, Barnett Shale field, Wise and Denton counties, Texas; Barnett Shale frac-gradient variances (abs.): AAPG Southwest Section Meeting, March 1-4, 2003, Fort Worth, Texas, http://www.searchanddiscovery.com /documents/abstracts/southwest/index.htm.

Palaces, J. G., Anders, D. E., King, J. D. (1984). South Florida basin-prime example of carbonate source rocks of petroleum. In: Palaces, J. G. (ed) Petroleum geochemistry and source rock potential of carbonate rocks. American Association of Petroleum Geologists 18, 71-96.

Peters, K. E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. American Association of Petroleum Geologists Bulletin 70, 93-117.

Peters, K. E., Moldowan, J. M. (1993). The Biomarker Guide: interpreting Molecular Fossils in Petroleum and Ancient Sediments, Prentice-Hall, Englewood Cliffs New Jersey.

Peters, K. E., Cassa, M. R. (1994). Applied source rock Geochemistry the Petroleum System-from Source to Trap. American Association of Petroleum Geologists Memoir 60, 93-117.

Peters, K.E., Walters, C.C., Moldowan, J.M. (2005). Biomarker guide In: Biomarkers and Isotopes in Petroleum Exploration and Earth History, second ed., vol. 2. University Press, Cambridge, pp. 476e971.

Powell, C. M. C. A., Farah, A., Dejong, K. A. (1979). Speculative tectonic history of Pakistan and surroundings: some constraints from the Indian ocean, Geodynamics of Pakistan. Geological Survey of Pakistan 5-24.

Quadri, Viqar-Un-Nisa, Shuaib, S. (1968). “Hydrocarbon Prospects of Southern Indus Basin, Pakistan.” AAPG Bulletin 70, p. 730-747

Radke, M., Welte, D. H. (1983). The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons. Advances in Organic Geochemistry 504-512.

Radke, M., Welte, D. H., Willsch, H. (1985). Maturity parameters based on aromatic Hydrocarbons: influence of the organic matter type. Advances in Organic Geochemistry 10, 51-63.

Radke, M. (1988). Application of aromatic compounds as maturity indicators in source rocks and crude oils. Mar. Petrol. Geol. 5, 224-236.

Raza, H. A., Ahmed, A., Ali, S.M. (1990). Pakistan offshore, an attractive frontier, Pakistan, Jr. Hydrocarbon, Research 2, 1-42.

Shah, S. M. I. (1977). Stratigraphy of Pakistan, Government of Pakistan Ministry of Petroleum and Natural Resources. Geological Survey of Pakistan memoir 12.

Shah, S. M. I. (2009). Stratigraphy of Pakistan, Government of Pakistan Ministry of Petroleum and Natural Resources. Geological Survey of Pakistan memoir 22.

Shah, S. B. A., and Ahmed, A. (2018). Hydrocarbon source rock potential of Paleocene and Jurassic deposits in the Panjpir oilfield subsurface, Punjab Platform, Pakistan. Arabian Journal of Geosciences, 11:607.

Shurr, G. W., and Ridgley, J. L. (2002). Unconventional shallow biogenic gas systems. Am. Assoc. Pet. Geol. Bull. 86, 1939-1969. doi: 10.1306/61EEDDC8173E-11D7-8645000102C1865D.

Slatt, R.M., Rodriguez, N.D. (2012). Comparative sequence stratigraphy and organic geochemistry of gas shales: commonality or coincidence? J. Nat. Gas Sci. Eng 8, 68e84.

Teichmüller, M., Littke, R., Robert, P. (1998). Coalification and maturation. In: Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F., Littke, R., Robert, P. (Eds.), Organic Petrology. Gebrüder Borntraeger, Berlin, pp. 86e174.

Tissot, B. P., Welte, D. H. (1984). Petroleum Formation and Occurrence, 2nd Edition. Berlin: 608 Springer-Verlag.

Van Krevelen, D.W. (1993). Coal: Typology, Physics, Chemistry, Constitution. Elsevier, Amsterdam, pp. 979.

Viqar-Un-Nisa, Quadri, Shuaib, S. M. (1968). Hydrocarbon Prospects of the Southern Indus Basin, Pakistan, AAPG Bulletin, vol. 70, p. 730-747.

Zaigham, N. A. (1991). Bela ophiolites and associated mineralization in southern part of axial-belt of Pakistan. Ph.D. thesis, University of Karachi pp 370.

Zaigham, N. A., Mallick, A. K. (2000). Prospect of hydrocarbons associated with the fossil rift structures of southern Indus basin, Pakistan. American Association of Petroleum Geologists Bulletin 84, 1833-1848.

Published

02-06-2022

Issue

Section

Earth & Environment