A new type of convergence for a sequence of rays
Keywords:
Rough convergence, rough limit set, sequence of rays.Abstract
In this work, we introduce the concept of rough convergence for a sequence of rays and obtain some basic results. In thiscontext, if we take r = 0 then we obtain the classical results in the theory of rays.
References
Aytar, S. (2008). The rough limit set and the core of a real sequence.
Numerical Functional Analysis and Optimization, 29:283-290.
Dndar, E. & akan, C. (2014). Rough convergence of double
sequences. Gulf Journal of Mathematics, 2:45-51.
Et, M., olak, R. & Alt?n, Y. (2014a). Strongly almost summable
sequences of order ?. Kuwait Journal of Science, 41(2):35-47.
Et, M., Tripathy, B.C. & Dutta, A.J. (2014b). On pointwise statistical
convergence of order ? of sequences fuzzy mappings. Kuwait Journal
of Science, 41(3):17-30.
Fenchel, W. (1953). Convex cones, sets and functions. Mimeographed
notes by D.W. Blackett, Princeton Univ. Press Princeton, N.J.
Listn-Garca, M.C. & Rambla-Barreno, F. (2011). A characterization
of uniform rotundity in every direction in terms of rough convergence.
Numerical Functional Analysis and Optimization, 32(11):1166-1174.
Listn-Garca, M.C. & Rambla-Barreno, F. (2014). Rough convergence
and Chebyshev centers in Banach spaces. Numerical Functional Analysis
and Optimization, 35:432-442.
Phu, H.X. (2001). Rough convergence in normed linear spaces.
Numerical Functional Analysis and Optimization, 22:201-224.
Phu, H.X. (2003). Rough convergence in infinite dimensional normed
spaces. Numerical Functional Analysis and Optimization, 24:285-301.
Stoll, M. (2001). Introduction to Real Analysis. Addison-Wesley
Longman, Boston.
Sudip, K.P., Debraj, C. & Sudipta, D. (2013). Rough ideal
convergence. Hacettepe Journal of Mathematics and Statistics, 42:633-
Wijsman, R.A. (1966). Convergence of sequences of convex sets,
cones and functions II. Transactions of the American Mathematical
Society, 123:32-45.