Antioxidant, antimicrobial and anti-cancer properties of silver nanoparticles biosynthesized using artichoke waste extract

DOI: 10.48129/kjs.10012

Authors

  • Ghadir El-Chaghaby
  • Sayed Rashad Agricultural Research Center
  • Heba Eid

DOI:

https://doi.org/10.48129/kjs.10012

Keywords:

Antioxidant, nanoparticles, antibacterial, artichocke

Abstract

In the present work, a green method for biosynthesis of silver nanoparticles (AgNPs) from artichoke processing is proposed. The formation of AgNPs spectrophotometrically confirmed by appearance of maximum peak at 430 nm. Transmission electron microscope revealed AgNPs with different shapes and average particle size (88.94 nm). Phytochemical and gas chromatography results indicated the presence of important compounds especially phenols and flavonoids in artichoke waste extract. AgNPs were tested to determine their potential antioxidant, antibacterial and anticancer activities. The results showed that AgNPs have high antioxidant capacity. Antibacterial test showed that AgNPs were capable of inhibiting Staphylococcus aureus, Bacillus cereus, Escherichia coli and Salmonella. AgNPs showed anticancer activity against breast cancer cell line with a decline in cells viability with increase of AgNPs concentration and IC50 (144.29μmole/ml). Based on these results and the benefits of phytochemicals detected in artichoke waste extract, this waste could be effectively used for silver nanoparticles preparation.

References

Alia, F.M., & Abdelgayed, S. (2018). Chemical Evaluation of Some Bio Extracts with Pathological Study on Tumor Cell in Mice Model 9, 1–7.

Ben Salem, M., Affes, H., Athmouni, K., Ksouda, K., Dhouibi, R., Sahnoun, Z., Hammami, S., Zeghal, K.M. (2017). Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC. Evidence-based Complement. Altern. Med. 2017.

Calderón-Jiménez, B., Johnson, M.E., Montoro Bustos, A.R., Murphy, K.E., Winchester, M.R., Baudrit, J.R.V. (2017). Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Front. Chem. 5, 1–26.

Emanuel, V., Adrian, V., Sultana, N. (2011). Antioxidant and Antimicrobial Activities of Ethanol Extracts of Cynara Scolymus ( Cynarae folium , Asteraceae Family ) 10, 777–783.

Florkiewicz, W., Malina, D., Pluta, K., Rudnicka, K., Gajewski, A., Olejnik, E., Tyliszczak, B., Sobczak-Kupiec, A. (2019). Assessment of cytotoxicity and immune compatibility of phytochemicals-mediated biosynthesised silver nanoparticles using Cynara scolymus. IET Nanobiotechnology 13, 726–735.

Głąb, A., Szmigiel-Merena, B., Brzezińska-Rodak, M., Żymańczyk-Duda, E. (2016). Biotransformation of 1- and 2-phenylethanol to products of high value via redox reactions. Biotechnologia 97, 203–210. https://doi.org/10.5114/bta.2016.62358

Husseiny, S.M., Salah, T.A., Anter, H.A. (2015). Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ. J. Basic Appl. Sci. 4, 225–231.

Ibrahim, G. E.; El-raey, Eldahshan, O. A., Souleman, A.A. (2013). Effect of Extraction on Phenoilc Content , Silymarin and Antiradical Activities of Artichoke Leaves and Roots. Eur. Sci. J. 9, 100–110.

Iravani, S., Korbekandi, H., Mirmohammadi, S. V, Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 9, 385–406.

Kamkar, A., Ardekani, M.R.S., Shariatifar, N., Misagi, A., Nejad, A.S.M., Jamshidi, A.H. (2013). Antioxidative effect of Iranian Pulicaria gnaphalodes L. extracts in soybean oil. South African J. Bot. 85, 39–43.

Kushwah, M., Bhadauria, S., Singh, K.P., Gaur, M.S. (2019). Antibacterial and Antioxidant Activity of Biosynthesized Silver Nanoparticles Produced by Aegle marmelos Fruit Peel Extract . Anal. Chem. Lett. 9, 329–344.

Kwon, G.-J., Han, S.-Y., Park, C.-W., Park, J.-S., Lee, E.-A., Kim, N.-H., Alle, M., Bandi, R., Lee, S.-H. (2020). Adsorption Characteristics of Ag Nanoparticles on Cellulose Nanofibrils with Different Chemical Compositions. Polymers (Basel). 12, 164.

Mohammed, A.E., Al-Qahtani, A., Al-Mutairi, A., Al-Shamri, B., Aabed, K.F. (2018). Antibacterial and cytotoxic potential of biosynthesized silver nanoparticles by some plant extracts. Nanomaterials 8.

Patra, J.K., Das, G., Baek, K.-H. (2016). Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. J. Photochem. Photobiol. B Biol. 161, 200–210.

Prieto, P., Pineda, M., Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269, 337–41.

Rashad, S., El-Chaghaby, G.A., Elchaghaby,M. A. (2019). Antibacterial activity of silver nanoparticles biosynthesized using Spirulina platensis microalgae extract against oral pathogens. Egypt. J. Aquat. Biol. Fish. 23, 261–266.

Rechner, A.R., Pannala, A.S., Rice-Evans, C.A. (2001). Caffeic acid derivatives in artichoke extract are metabolised to phenolic acids in vivo. Free Radic. Res. 35, 195–202.

Salaheldin, A. T., El-Chaghaby, G., A. El-Sherbiny, M. (2019). Green synthesis of silver nanoparticles using Portulacaria afra plant extract: characterization and evaluation of its antibacterial, anticancer activities. Nov. Res. Microbiol. J. 3, 215–222.

Salari, S., Esmaeilzadeh, S., Samzadeh-kermani, A. (2018). In-vitro Evaluation of Antioxidant and Antibacterial Potential of Green Synthesized Silver Nanoparticles Using Prosopis farcta Fruit Extract. Iran. J. Pharm. Res. 18, 430–445.

Santana, P.M., Miranda, M., Payrol, J.A., Silva, M., Hernández, V., Peralta, E. (2013). Gas Chromatography-Mass Spectrometry Study from the Leaves Fractions Obtained of Vernonanthura patens (Kunth) H. Rob. Int. J. Org. Chem. 03, 105–109.

Seida, A.A., Tanbouly, N.D. El, Islam, W.T., Eid, H.H., El-Maraghy, S.A., Senousy, A.S. El. (2011). Artichoke Waste as a Source of Health Promoting Hepatoprotective Phenolics, in: the 8 th international iwa symposium on waste management problems in agro-industries. pp. 803–810.

Tsevegsuren, N., Davaakhuu, G., Udval, T. (2014). Phytochemical analysis of Cynara scolymus L. cultivated in Mongolia. Mong. J. Chem. 15, 40–42.

Venugopal, K., Ahmad, H., Manikandan, E., Thanigai Arul, K., Kavitha, K., Moodley, M.K., Rajagopal, K., Balabhaskar, R., Bhaskar, M. (2017). The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines. J. Photochem. Photobiol. B Biol. 173, 99–107.

Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind. Crops Prod. 44, 566–571.

Yang, M., Ma, Y., Wang, Z., Khan, A., Zhou, W., Zhao, T., Cao, J., Cheng, G., Cai, S. (2020). Phenolic constituents, antioxidant and cytoprotective activities of crude extract and fractions from cultivated artichoke inflorescence. Ind. Crops Prod. 143, 111433.

Zuorro, A., Maffei, G., Lavecchia, R. (2016). Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. J. Clean. Prod. 111, 279–284.

Published

02-06-2022