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1. Introduction
The problem of placing monitoring devices in a system when 
every monitor is paired with a backup monitor serves as a 
motivation for the concept of locating paired-dominating sets 
(LPDS). The concept of locating paired-dominating sets was 
introduced in (McCoy & Henning, 2009) as an extension of 
paired-dominating sets described in (Haynes & Slater, 1995) 
(Haynes, Hedetniemi, & Slater, 1998).

Let   be a graph where  is the set of vertices and  is 
the set of undirected edges. A complete graph is a graph such 
that all the vertices are connected to each other.  is a 
subgraph of a graph  and . A set  of vertices, 
where , is called a dominating set of  if every vertex 
in  is adjacent to a vertex in . The open neighborhood of 
a vertex  is defined as , the closed 
neighborhood of a vertex  is defined as  
. The closed neighborhood of a set of vertices  is defined 
as  . A dominating set is called locating-dominating 
if for any pair of distinct vertices , it holds that 

.

A subset of edges in a graph  is independent if no two edges 
in the subset share a vertex of . A matching in a graph  is 
a set of independent edges in . A perfect matching  in   
is a matching in  such that every vertex of  is incident to 
an edge of . A paired-dominating set, abbreviated PDS, of 
a graph  is a set  of vertices of  such that every vertex is 
adjacent to some vertex in , and the subgraph  induced 
by  contains a perfect matching  (not necessarily induced). 
A set that is PDS and for any distinct vertices , it 
holds that  is  called a locating-paired-
dominating set (LPDS). The size of the smallest locating-
paired-dominating set in a graph  is denoted as  .

Consider a complete graph on 4 vertices. Possible perfect 
matchings are illustrated in Figure 1.

Fig. 1. Possible perfect matching.

We illustrate the notion of PDS and LPDS in Figure 2, 
where (a) is a graph with 8 vertices, and the PDS vertices 
are highlighted in (b). In Figure 2b is an example of PDS, 
which is also LPDS of the graph from Figure 2a. The set is 
PDS since the set  induces a perfect matching. 
In addition, it is LPDS since  

Fig. 2. (a) Graph, (b) PDS and LPDS of (a)

The triangular grid  is an infinite 6-regular graph, where 
the vertex set is  
Two vertices in  are adjacent if their Euclidean distance is 
equal to 1. Let  be the set of vertices  with  
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and  . Clearly . The king grid  is an 
infinite 8-regular graph where  and two vertices are 
adjacent if their Euclidean distance is equal to 1 or . Let  
be the set of vertices  with  and . Clearly  

 .

For notation and graph terminology, we in general follow 
(Haynes, Hedetniemi, & Slater, 1998). The problem of 
finding an optimal locating-dominating set in an arbitrary 
graph is known to be NP-complete. This problem has been 
studied for infinite grids in (Honkala, 2006) (Honkala 
& Laihonen, 2006) (Slater, 2002). The basic properties 
of locating paired-dominating sets in graphs and bounds 
of their size can be found in (McCoy & Henning, 2009). 
Characterization of optimal locating-paired-dominating sets 
in infinite square grids is discussed in (Niepel, 2015).

The rest of the paper is organized as follows. Section 2 
discusses the share of a vertex and the density of a set of 
vertices. Finding the locating-paired-dominating set in 
triangular grid is given in Section 3. Finally, in Section 4, we 
illustrate how to find the LPDS in the king grid.

2. The Share
We consider the density of locating-paired-dominating sets 
in the triangular grid  and king grid  . The density of the 
dominating set  in  is defined in (Honkala & Laihonen, 
2006) as follows:

                                                                           (1)

The density of the dominating set  is defined in 
(Honkala & Laihonen, 2006) as:

If the locating-paired-dominating set in an infinite graph   
has the smallest possible density, then it is called an optimal 
LPDS. Following Slater (2002), the share of the vertex  in a 
dominating set  is defined as follows:

We define the average share of vertices in triangular grid  as:

Observation 1. There is a relationship between the density of 
dominating set  in triangular grid  and the average share 
of all vertices in the corresponding paired-dominating set.

 

Proof. Let  be a dominating set in . Each vertex in the 
set  is dominated by a vertex from . Counting 

the contribution of vertices in  for shares of vertices in 
 we have

All vertices that are dominated by vertices from  form 
a subset of  , so we have

As

Thus,

So, in expression (1) we can replace  with  
and we have

A similar result can be proved analogously for the density of 
a dominating set in the king grid . If we need to minimize 
the density of an LPDS in a grid, then we should maximize 
the average share of its vertices.

Let  be an LPDS in graph , and  be a connected 
component of  We define a pattern  as a weighted 
graph that is created by vertices of neighborhood  The 
weight of each vertex  in  is  The share 
of the pattern we define as the average share of dominating 
vertices in the pattern.

In this paper, we find the minimal density of locating-paired-
dominating sets in the triangular grid  and give bounds for 
the minimal density in the king grid .

3. LPDS in a Triangular Grid
Let  be an LPDS in the triangular grid  and  a matching 
with locating dominating property. Each edge of matching   

 is included in a pattern, so we can consider the LPDS as 
a (partly overlapping) tiling of the triangulated plane with 
patterns. In Figure 3, we illustrate two different tilings of

, where the black vertices are in LPDS. Figure 4 shows 
that in both cases, the plane is covered by patterns of the 
same types A and B, respectively, where the shaded vertices 
are the weighted black vertices. The shares of both patterns 
are equal to 15 /4 = 3.75. Using densities of these LPDS, 
we bound the minimal density of an LPDS in the infinite 
triangular grid as min 

Now we show that we can restrict ourselves to patterns 
created by single edges of the perfect matching.
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Lemma 1. Let  be a pattern created by a component  with 
at least three vertices. Then the share of  is less than 15/ 4 
= 3.75.

Proof. Suppose that  contains exactly three vertices. 
We have the following constraints for the vertices in the 
patterns. Each vertex of  is adjacent to at most one vertex 
of weight 1. If two vertices of a pattern are adjacent to the 

same pair of vertices in  then at least one of these vertices 
should have weight at least 3. These constraints follow 
from the locating property of dominating set . All possible 
patterns consisting of three vertices with maximal possible 
shares 3. 5, 3.666, and 3.444 are illustrated in Figure 5. 
Adding more points to component  leads in decreasing the 
share of the corresponding pattern. 

Fig. 3. Tiling wih patterns of type A and B in .

Fig. 4. Types of patterns in .

From the above lemma it follows that all patterns in an 
optimal LPDS are created by edges of matching which is 
induced by dominating set . In the rest of the paper, we shall 
suppose that matching of LPDS is induced.

Fig. 5. Different possible patterns.

Observation 2. Let  be an LPDS in  and  the corresponding 
matching. Each pattern created by an edge has at most two 
vertices with weight 1.

Proof. Suppose that a pattern contains more than two vertices 
with assigned weight 1. Then, there exist two vertices with 
weight 1 adjacent to the same vertex in set  which violates 
the locating property.  

Let  be a pattern corresponding edge  of the matching 
corresponding to a paired-dominating set and  
be the weights of vertices in  be 
the weights of vertices in  , and  
be the weights of vertices in . The tuple 

 is what we call 
a signature of edge  .

From the definition of the share, it follows:

The vertices in  and  are 
called pendant vertices of the pattern, and the vertices in 

 are called internal vertices of the pattern.

Observation 3. Each pattern has at least one weight 
greater or equal to 3 assigned to at least one of its internal 
vertices.

Proof. Let  be the edge inducing a pattern and  
are internal vertices adjacent to both  and . Then,  
is a subset of  and  As  there 
exists at least one vertex in  different from  and adjacent 
to , so at least one of the weights  or  is at 
least 3.

Observation 4. Let  be an LPDS in . The largest possible 
share of a pattern created by  is 23/ 6, the second largest 
possible share is 15 /4, and the third largest possible share 
is 11/ 3.
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Proof. This follows from Observation 2 and 3. The possible 
pattern with signature (1, 2, 2; 1, 2, 2; 2, 2, 2, 3) has the 
maximum share equal to 23 /6. The pattern with signature 
(1, 2, 2; 1, 2, 3; 2, 2, 2, 3) or (1, 2, 2; 1, 2, 2; 2, 2, 2, 4) 
has the second maximum share equal to 15 /4. The pattern 
with signature (1, 2, 3; 1, 2, 3; 2, 2, 2, 3), (1, 3, 3; 1, 2, 
2; 2, 2, 2, 3), (1, 2, 3; 1, 2, 2; 2, 2, 2, 4), or (1, 2, 2; 1, 2, 
2; 2, 2, 3, 3) has the third maximum share equal to 11/ 3. 
That is, the share is maximized if the weight values are the 
smallest possible. Furthermore, any pattern created by edge 

, where , in a triangular grid  cannot contain 
an internal vertex with weight 5 or pendant vertex with 
weight 4. Otherwise, one of the vertices  is adjacent 
to another vertex in , and the corresponding matching is 
not induced. 

These values of share are used in the following lemma.

Lemma 2. Let  be an LPDS of , then the density of the set   
 is at least 4/ 15.

Proof. Let  be the tiling of a grid corresponding to set . If 
all patterns in  have shares at most 15/ 4, then the density 
of  is at least 4/ 15.

Suppose that  contains patterns with signature (1, 2, 2; 1, 2, 
2; 2, 2, 2, 3) and share 23 /6. To show that the average share 
of all patterns in  is at most 15/ 4 we construct an auxiliary 
digraph . The nodes of this digraph correspond to patterns 
of  . Let  and  be nodes in  corresponding to patterns  
and  of tiling  , respectively. The pair  is an arc in  if 
and only if the pattern  contains exactly one internal vertex 
with weight 3, which is a pendant vertex of pattern . The 
second internal vertex of  has a weight equal to 2.

Let  be a node corresponding to a pattern  with signature 
(1, 2, 2; 1, 2, 2; 2, 2, 2, 3). From the above, it follows 
that the node  has one outgoing arc and no incoming 
arcs. Thus,  has  and  where 
indeg means the number of incoming arcs and outdeg 
means the number of outgoing arcs. In what follows, we 
shall estimate the average value of shares of patterns that 
correspond to nodes of a connected component containing 
node . We define a contribution of a node  as the 
difference of the share of the pattern corresponding to  
and the target value 15 /4.

The contribution of a node  corresponding to a pattern 
with signature (1, 2, 2; 1, 2, 2; 2, 2, 2, 3) is 1/ 12 and 

 The contribution of a node    
corresponding to a pattern with signature (1, 2, 3; 1, 2, 2; 2, 2, 
2, 3) is 0 and  The contribution 
of nodes corresponding to patterns with signatures (1, 2, 
3; 1, 2, 3; 2, 2, 2, 3) is 0 and  

The contribution of nodes corresponding to patterns with 
signatures (1, 3, 3; 1, 2, 2; 2, 2, 2, 3), (1, 2, 3; 1, 2, 2; 2, 2, 2, 
4), or (1, 2, 3; 1, 2, 2; 2, 2, 3, 3) is less or equal to -1/ 12 and 
their outdeg(u)-indeg(u)=-1. We can observe that the input 
degree of a node u corresponding to a pattern with k pendant 
vertices with weight 3 is equal to k, and the contribution of 
a node u (contrib(u)) is less or equal (outdeg(u) - indeg(u)) 
×1/ 12. It is known that for each finite directed graph C holds 
the followings.

That is,

We get inequality,

 

  

   

         

From the above, it follows that the summation of contributions 
of all vertices in the connected component containing node 

 is less than or equal to 0. So, the average value of shares of 
all corresponding patterns is not larger than 15/ 4.

We can conclude that the average share of patterns created 
by  is asymptotically not greater than 15 /4. The previous 
examples and lemma will conclude to the following 
theorem.

Theorem 1. The minimal possible density of an LPDS in the 
triangular grid is equal to 4/ 15.

4. LPDS in King Grid
Similar to the previous section, we try to find the minimal 
possible density for an LPDS in a king grid. To estimate 
the minimal density of an LPDS in the king grid, , we can 
use the tiling as shown in Figure 6. As all patterns in the 
tiling have share with signature (1, 2, 2, 2, 3; 1, 2, 2, 2, 3; 
2, 2, 3, 3) the average share is 9 /2. Thus, it means that the 
density of the LPDS is equal to 2/ 9. The pattern of type 
B in Figure 7 shows the corresponding pattern associated 
with this tiling.
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Fig. 6. Valid tiling in  .

Fig. 7. Patterns types in  .

In the king grid with an LPDS, the following two types of 
patterns are possible.

• Patterns created by horizontal or vertical edges with 6 
pendant vertices, and four internal vertices. We shall 
classify such patterns as type A as illustrated in Figure 7.

• Patterns created by diagonal edges with 10 pendant 
vertices, and two internal vertices. We shall classify 
such patterns as type B as illustrated in Figure 7.

Now, we shall discuss maximum possible shares of patterns 
in the king grid .

Observation 5. Let  be an LPDS in  and  be the 
corresponding matching. Then each pattern created by an 
edge in  has at most two pendant vertices with weight 1.

Proof. We use the same argument as in Observation 1.

Lemma 3. Let  be an LPDS and  be the corresponding 
matching, each pattern of type A created by  has share 

 .

Proof. Let  be a pattern of type A, then  contains 4 internal 
vertices. From the locating property it follows that at most, 
one of the internal vertices has weight 2, and the remaining 
internal vertices have weights at least 3. The maximum 
possible share of a pattern of type A corresponds to signature 
(1, 2, 2; 1, 2, 2; 2, 2, 2, 3, 3, 3) and its share is 4.5. 

From Lemma 3 it follows that using patterns of type A in 
the tiling cannot improve the estimation of the density of an 
LPDS that is obtained by tiling in Figure 6. In the following 
lemma, we estimate the maximum possible share of a pattern 
of type B that corresponds to an LPDS in  .

Lemma 4. Let  be an LPDS in  and  be the corresponding 
matching. If a matching edge creates a pattern of type B, 
then it has at least two pendant vertices with weight 3.

Proof. Let us assume that the matching edge  in  
creates a pattern of type B, as shown in Figure 8. It follows 
from Observation 5 that at most, one pendant vertex adjacent 
to a dominating vertex  can have weight 1.

In Figure 8, we label pendant vertices adjacent to  as 
 and , and possible positions of dominating 

vertices as 1, 2, 3, 4, 5, 6, and 7.

Fig. 8. Part of the proof of Lemma 4.

We can assume that the weight of vertex  is not equal to 
1 (otherwise, apply the following argument to vertices

 ). We show that at least one of the vertices  
should have weight at least 3. Suppose that all vertices   
have weight less or equal to 2. We can consider the following 
three cases:

• If vertex 1 is a dominating vertex, then both  and  
are dominated with the same set  which is a 
contradiction with the locating property.

• If vertex 2 is a dominating vertex, then vertices  
have the same set  of dominating vertices 
which violates the locating property.

• If vertex 3 is a dominating vertex, then vertices  and   
have the same dominating vertices which violates the 
locating property.

From the above, it follows that if vertex  does not have 
weight 1, then at least one of the vertices  has weight 
at least 3. We can apply the same argument for pendant 
vertices in the neighborhood of vertex  to finish the proof.  
From Lemma 4 and the locating property of a dominating 
set, it follows that a pattern of type B has at most one internal 
vertex with weight 2, at most 2 pendant vertices have weight 
1, and at most 6 pendant vertices have weight 2. So, the 
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largest possible share value is attained for signature (1, 2, 2, 
2, 3; 1, 2, 2, 2, 3; 2, 2, 2, 3) and is equal to 14 /3. Thus, we 
have the following corollary:

Corollary 1. Let  be a pattern created by an LPDS in the 
king grid. The share of the pattern  is not greater then 14 /3.

The tiling of type B from Figure 7 creates an LPDS with 
density 2/ 9. From Corollary 1 it follows that the density 
of any LPDS in the king grid is at least 3/ 14. So, we can 
conclude the following:

Theorem 2. Let  be the density of an optimal LPDS in the 
king grid. Then, the density is .

We finish our discussion about the king grid with the 
following:

Conjecture 1. The density of an optimal LPDS in the king 
grid is equal to 2/ 9.
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