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Abstract 

In this article, a nonlinear dynamical system with three degrees of freedom (DOF) consisting of 
multiple pendulums (MP) is investigated. The motion of this system is restricted to be in a vertical 
plane, in which its pivot point moves in a circular path with constant angular velocity, under the 
action of an external harmonic force and a moment acting perpendicular to the direction of the last 
arm of MP and at the suspension point respectively. Multiple scales technique (MST) among other 
perturbation methods is used to obtain the approximate solutions of the equations of motion up to 
the third approximation because it is authorizing to execute a specific analysis of the system 
behaviour and to realize the solvability conditions given the resonance cases. The stability of the 
considered dynamical model utilizing the nonlinear stability analysis approach is examined. The 
solutions diagrams and resonance curves are drawn to illustrate the extent of the effect of various 
parameters on the solutions. The importance of this work is due to its uses in human or robotic 
walking analysis.    

Keywords: Multiple scales technique; nonlinear dynamics; resonance; stability; triple pendulum. 

1. Introduction

It is known that the multiple pendulums (MP) 
consist of several blocks connected by ropes, 
in which its fixed point is the other end of the 
first rope. These blocks and ropes may be 
equal or different. One of MP is the triple 
pendulum (TP), which is widely used in 
practical applications like devices that 
constructed to observe and detect gravity 
waves (Plissi et al., 2000), the crankshaft of 
the piston (Awrejcewicz & Kudra, 2005a), in 
the devices that analysis the movement of 
robots (Raymond & Virgin, 2013) and others. 
In (Awrejcewicz et al., 2007), the authors 
studied both experimentally and numerically 
analysis of the TP, in which it is subjected to 
the action of physical constraints and 
vibrational force. The comparison between the  

laboratory results and the numerical ones 
showed a high accuracy between them. The 
impact of natural frequency on the plane 
motion of MP is investigated in (Gupta et al., 
2016). The attained results were verified with 
the obtained ones in (Braun, 2003). The 
motion of a nonlinear dynamical model 
represented by TP is investigated in (Gupta et 
al., 2017). It is observed that the motion of the 
third pendulum has a most chaotic behaviour 
than the other two pendulums. The stability of 
3DOF of TP as a mechanical model with some 
restrictions on its position is examined in 
(Awrejcewicz & Kudra., 2005b) and is 
considered as a special case of the work in 
(Awrejcewicz et al., 2004).
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On the other side, dynamical pendulum 
models with 2 or 3 DOF have been studied in 
many research works such as (Awrejcewicz et 
al., 2016; Starosta et al., 2011; Starosta et al., 
2012; Amer et al., 2016; Nayfeh, 2004; 
Awrejcewicz et al., 2013; Amer et al., 2018; 
Amer et al., 2019; El-Sabaa et al., 2020). The 
plane motion of nonlinear spring pendulum 
with 2DOF is investigated in (Awrejcewicz et 
al., 2016) for a fixed supported point under the 
influence of two external forces in the 
direction of a spring arm and its perpendicular 
direction. The generalization of this model is 
presented in (Starosta et al., 2011) when the 
supported point moves in a circular path, in 
(Starosta et al., 2012) when this point moves 
along a Lissajous curve and in (Amer et al., 
2016) for the motion of the same point in an 
elliptic path. The analytic approximate 
solutions of these works are obtained using the 
multiple scales technique (MST) (Nayfeh & 
Mook, 1979; Nayfeh, 2004; Vakakis et al., 
2009) and the emerged resonance cases are 
studied.

The vibrational motion of a damped spring 
rigid body pendulum is investigated in 
(Awrejcewicz et al., 2013) for the case of a 
fixed pivot point. The generalization of this 
problem is presented in (Amer et al., 2018), 
(Amer et al., 2019) when the supported point 
moves in an elliptic path for the cases of linear 
and nonlinear spring and in (El-Sabaa et al., 
2020) when the supported point moves in a 
Lissajous curve. The conditions of solvability 
for the steady-state solutions are obtained and 
the time histories of the approximate and 
numerical solutions are plotted in some 
diagrams. A different dynamical model 
represented by a crane consisting of a double-
pendulum with constant cable length was 
discussed (Jaafar et al., 2019).

The dynamics of the 2DOF mathematical 
pendulum with variable masses are studied
in (Kwiatkowski et al., 2017) while the 
total mass of the pendulum system 
remains constant. It is observed that, when the 
mass of the second arm increases, the 
amplitude of oscillations of the pendulum 
decreases. The 

numerical solutions are obtained using the 
Mathematica package (Wolfram, 2017). A 
nonlinear damped spring model is investigated 
in (Kamińska et al., 2018) under the action of 
a resistance force and in the presence of a 
variable harmonic moment at the point of 
suspension. The authors studied two 
approaches of MST according to two-time 
scales and obtained the numerical results of 
the original system of motion.

In the present work, we are going to study 
the motion of a dynamical model with 3DOF 
consisting of a triple pendulum (TP) with 
three different lengths in which the one tip of 
its first arm moves in a circular path with 
constant angular velocity. This motion is 
considered under the influence of an external 
harmonic force in the perpendicular direction 
of the third arm. Moreover, a harmonic torque 
acts in an anticlockwise direction at the 
suspension point. The governing equations of 
motion (GEOM) are derived using Lagrange's 
equations of the second type and are solved 
analytically using MST up to the third 
approximation. The emerged resonances are 
classified and the solvability conditions are 
obtained. Therefore, the steady-state 
oscillations are investigated. The variation of 
the attained solutions via time and the 
resonance curves are represented in different 
plots to show the significance of the distinct 
parameters on the behaviour of the dynamical 
model. The nonlinear stability analysis 
approach is used to discuss the stability of the 
considered model. The significance of this 
work is due to its interesting applications in 
life such as improving the walking movements 
of humans and robots, to predict and observe 
the gravity waves prophesied by relativity 
theory.    

2 Description of the problem 

Let us consider the nonlinear dynamical 
motion of a TP of lengths 1 , 2  and 3  with 
centers 1z , 2z and 3z respectively, in which
their masses 1m , 2m and 3m are distributed.
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The suspension point N of TP is a constraint 
to move in a circular path, of radius a , in an 
anticlockwise direction with constant angular 
velocity . The angles 1 , 2  and 3 are
defined as the inclination of the TP rods on the 
vertical axis that parallel to OY the axis in 
which OX axis has a horizontal direction, see 
Figure.1. 

Fig.1. Triple pendulum model 

The motion of the considered model under the 
influence of an external harmonic force acts 

( )F t  in the perpendicular direction of the 
bottom arm and a harmonic torque ( )M t  at 
the end N of the upper arm. Accordingly, we 
consider a planar motion of the TP and 
therefore, we can write the coordinates Nx  
and Ny of the point N at any instance t in 
the form: 

sin( cos(N Nx a t y a t            (1) 

Based on Figure.1, one can write the 
coordinates of the centers ( 1, 2,3)jz j   of 
the pendulum's rods in the forms:  

1 1
1 1 1

2
2 1 1 2

2
1 1 2

3
3 1 1 2 2 3

3
1 1 2 2 3

( sin sin , cos cos ),
2 2

( sin sin sin , cos
2

cos cos ),
2

( sin sin sin sin ,
2

cos cos cos cos ).
2

z a t a t

z a t a t

z a t

a t

 

 

 

  

  

   

    



   

   

      (2) (2) 

To gain more insight into the derivation of the 
governing equations of motion (GEOM), we 
are going to express the kinetic energy (KE) of 
the TP as the summation of the translation KE 
produced from the linear velocities cjV  of the 
centers of mass and the rotation KE of each 
rod. Therefore, we can write easily the total 
KE in the form: 
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where jI  represent moments of inertia of each 
rod.    Referring to the above, the total kinetic 
and potential energies take the forms:  
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By (4) and (5), the Lagrangian  VTL   can 
be obtained easily, then using the following 
Lagrange’s equations (Awrejcewicz, 2012) to 
obtain the GEOM as       follows: 
                                                                        

1
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1 1
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3 3

( ) ( ) ,

( ) ( ) 0,
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d L L
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dt

d L L

dt

d L L
Q

dt





 

 

 

 
 

 

 
 

 

 
 

 

                                   (6)      

 
Here, j  and ( 1, 2,3)j j   are the 
generalized coordinates and velocities 
respectively, while 

1
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3
Q  are the 

generalized forces. 
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where, 0F   is the amplitude of the external 
force ( )F t , while 1  and 2  denote the 
forcing frequencies of ( )M t  and ( )F t  
respectively.                                        

The final goal of this section is to obtain 
the GEOM in a dimensionless form. To 
achieve this goal we are going to consider the 
following forms of dimensionless coordinate, 
frequencies, parameters, and time.                                                                                    
             

22
2 2 2 32

2 32 2

1 1 1

2 2 31 2
1 2 1

1 1 1 1 2 3

3 3 1 2 3
2 3

1 1 2 3 1 2 3

1 2 31
1 12 2

1 1 1 2 3 2 2 3

, ( 1,2,3), , ,

3 ( 2 )
, , ,

2 ( 3 3 )

3 3( 2 2 )
, ,

2 ( 3 3 ) 2( 3 3 )

3 ( 2 )3 ( )
, ,

( 3 3 ) 2 ( 3 )

j

j

wwg
w j

w w w

m m
p p c

w w m m m

m m m m
c c

m m m m m m

m mM t
f b

w m m m m m

b

  


    

 
  

 

 
 

   


 

  

3 3 2 3 1
2 3 1

2 2 3 2 3 3

2
2 2 12 2

3 3 1 3

3 3( 2 ) 3
, , ,

2 ( 3 ) 2( 3 ) 2

33
, , .

2

o

m m m
b s

m m m m

F
s f w t

w m



  

 

  

(8) 

Substitution of (4), (5), (7), (8) into (6), yields 
the GEOM in the following dimensionless 
forms:                 
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Looking closely at the system of equations 
(9)-(11), we conclude that it is a nonlinear 
system of differential equations of second 
order in j  which are functions of the 
dimensionless parameter 1wt  .                            
 

3 Methodology 

 
In this section, we are going to use MST to 
achieve the asymptotic solutions of the GEOM 
(9)-(11) and to obtain the resonance conditions 
(Rajasekar & Sanjuan., 2016). Therefore, we 
approximate the trigonometric functions of 

( 1, 2,3)j j   these equations up to the third 
order. It must be noted that these 
approximations are valid in a tiny 
neighborhood of the static equilibrium 
position. Therefore equations (9)-(11) become 
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Now, we are going to introduce a small 
parameter 0 1  in the previous equations 
(12)-(14). Therefore, we express the amplitude 
of oscillations in terms of   as follow:                                 
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According to MST procedure, we seek the 
second-order (three terms) expansions for 

,   and  in powers  in the form: 
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where ( 0,1, 2)n

n n     represent different 
time scales.                                                                                
 
To determine ,   and   as functions n , we 
change   to n  according to the following 
chain rule: 
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Here, terms of )( 3O and higher are neglected 
due to their smallness. Considering that: 
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in which the parameters 3 3, , , , ,j j jc b s c b a  and 

jf  are of order 1.                                                                    
 
Substituting (15)-(18) into (12)-(14) and 
equating coefficients of equal powers of 2,   
and 3  on both sides, to obtain:                                                                   
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Order of 2                                                                     
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0 0 1 3

3 3
2 sin( ),

2 2

a 
   

  

 
   

 
 (24)   

Order of 3  
2 2 2

3 1 1
3 3 1 1 02 2

0 1 0 2

2 2 2

2 1 1
1 22 2

0 1 0 0

3 23 3
1 0 1

1

cos ( ) 2(

)

cos( ) ,
6

c f p

c c

c ac

  
 

   

  

   

   

  
   

   

  
  
   

 

      (25)

 

                                      
2 2 2 2

23 1 1 2
3 2 32 2

0 1 0 2 0 1

22 2
33 21 1

1 2 12 2

0 0

23
0 1

2

2( )

6

cos( ) ,

b

b
b b

ab

   
 

     

 


 

  

   
    

     

 
  

 



 (26) 

2 2 2
23 1 1
3 3 2 2 02 2

0 1 0 2

22 2 2
332 1 1

1 2 12 2

0 1 0 0

2

0 1

3

3
cos ( ) 2(

2

)
4

3
cos( ) .

2

f p

s s

a

  
  

   

  


   

  

  
   

   

  
   
   



 (27) 

An inspection of the previous system of 
equations (19)-(27) reveals that we have three 
groups of partial differential equations (19)-
(21), (22)-(24), and (25)-(27), in which it can 
be solved subsequently. Therefore, we start 
with the general solutions of equations (19)-
(21) which take the forms: 
 

3 0 3 0

1 1 1 ,
i c i c

e e
 




                              (28)
   

 
3 2 0 3 2 0

1 2 2 ,
i b i b

e e
   




                          (29) 

3 0 3 0

3 3

2 2
1 3 3 ,

i i

e e
   




                         (30) 
  

where, 1i  and ( 1, 2,3)j j  are 
unknown complex functions of slow time 
scales 1  and 2 , while j  indicates to its 
complex conjugates.  
 
Substituting (28)-(30) into (22)-(24) and 
eliminating terms that produce secular terms 
to obtain uniform asymptotic solutions. Then, 
the conditions for eliminating these terms are: 
 

31 2

1 1 1

0, 0, 0.
  

 
  

  
                  (31) 

 
Therefore, we can write the second-order 
solutions in the forms: 
 

0

2

3
2 2

1 3

,
2 ( )

ii ac
e CC

c





 


                       (32)  

0

2

3
2 2 2

2 3 2

,
2 ( )

ii ab
e CC

b




 
 


                    (33) 

0

2

2 2 2

3 3

3
,

2 (2 3 )

ii a
e CC




 
 


                    (34)  

 
where CC are the complex conjugates of the 
preceding terms. 
By the above, cancelling of secular terms 
demands that; the functions 

( 1, 2,3)j j  depend on 2 only. 
 
Substituting (28)-(31) and (32)-(34) into (25)-
(27), then cancelling terms that produce 
secular terms to obtain the third-order 
approximations. Elimination of these terms 
required: 
 

231
3 1 1

2

2 0,
2

c
i c




   


                           (35) 

2 232
3 2 2 2 2

2

2 0,
2

b
i b  




   


                    (36) 

2 23
3 3 3 3

2

3 3
2 0.

2 4
i  




   


                    (37) 
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Thus, the solutions 3 3,   and 3  have the 
forms: 
 

0 2 3 0 31 0

0 3
0 3

0 3

32 3

1 3 2 21 1
3 2 2

3 1 3 3 2

3
( )2 22

2 3 3 3 1

2 2
3 3 1 3

( )2

3 1

2

1 3

2( ) 48( )

3

(2 3 ) 2 ( 2 )

,
2 ( 2 )

i b i cip

i
i c

i c

c b ef e e

c p c b

c e ac e

c c

ac e
CC

c

  

 
 

 






 

  



 





 
  

 

 
 

 


 



   (38) 

0 3
0 3

0 2 30 2 3

0 2 3

3

2 2
3 1 1 2 3 3

3 2 2 2

3 2 3 3 2 3

( )3 23

3 22

2

2 2 3

( )2

3 2

2

2 2 3

3

( ) (2 3 )

48 2 ( 2 )

,
2 ( 2 )

i
i c

i bi b

i b

c b e b e

b c b

ab ee

b

ab e
CC

b

 


   

  




  



 



 





 
 

 


 




 



            (39) 

0 3
0 32 0

0 3
0 2 3

0 3

3
3

3 2
3 1 1 32

3
2 2 2

3 2 3 3

3
( )

2 2 2
2 3 2 2 3

2
2 2

3 3
3 3 2

3
( )

2 2
3

2

3 3

3 3 48
2( ) ( )

2 2

3

3 4 ( 6 )( )
2

3
.

4 ( 6 )

i
i cip

i
i b

i

c s e ef e

p c

s b e a e

b

a e
CC

 


  
 

  



 

 

  



 





 
  

 

 
 




 



   (40) 

The complex functions ( 1, 2,3)j j   can be 
determined from conditions (31) and (53)-(37) 
system with the help of the following initial 
conditions: 
 

1 01 2 03 3 05

1 02 2 04 3 06

(0) , (0) , (0) ,

(0) , (0) , (0) ,

z z z

z z z

  

  

  

  
         (41) 

 
where, 01 02 06, ,...,z z z  are known initial 
quantities. 
 
4 Resonance cases 

 

In this section, we shed light on the 
classification of resonance cases. It is well 
known that resonance occurs when the 
denominators of the second and third 

approximations tend to zero. Therefore, many 
resonance cases can be detected from 
equations (32)-(34) and (38)-(40) in which can 
be classified into: 
 
(i) Primary external occurs at 

1 3 2 3

3
, ,

2
p c p    

(ii) Internal occurs at  

3 2 3 3 3 3 3 2

3 3
, , ,

2 2
b c c b     

(iii) Natural occurs at 

3 3 2 3

3 3 2

3

3
, , ,

2

2 , 2 ,

6 .

c b

c b

    

  

 

  

 



 

 
It is worthwhile to notice that, if any one of 
the resonance cases is satisfied, we can foretell 
that, the behaviour of the studied model will 
be very intricate. Moreover, the above 
approaches are valid if the vibrations have 
values outside of the resonance ones. 
 
Now, we examine a combination of primary 
external and internal resonance in which they 
are simultaneously occurring. 
Therefore, we consider: 
 

1 3 2 3

3
,

2
p c p  

 
and

3 3 2

3

2
b   , which 

 
 

characterize the closeness of 
1 2,p p  and  

3

3

2


 
to 

3 3

3
,

2
c   and 

3 2b   respectively. 

Therefore, we introduce what so-called 
detuning parameters ( 1, 2,3)j j   as follows: 
 

1 3 1 3 3 2 2

2 3 3

3
, ,

2

3
.

2

p c b

p

   

 

   

 

              (42) 

 
These parameters are considered as a gauge of  
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the distance from the rigorous resonance. 
Consequently, we express about them in terms 
of   as: 
 

2 ; ( 1, 2,3)j j j                               (43) 
 
Substituting (42) and (43) into (12)-(14), and 
taking into account the elimination of secular 
terms, we obtain the solvability conditions in 
the forms: 
 
-According to the second-order approximation

 31 2

1 1 1

0, 0, 0.
  

 
  

  
               (44) 

-According to the third-order approximation 
2 1

2 2

2 3

2 2

21
1 3 3 1 1

2

2 2 22
3 2 3 2 2 2 2 3 3

2

2 23
2 3 3 3 3

2

2

2 3 2 2

4 0,

4 3 0,

2 4 6 3

4 0.

i

i

i

i

f e i c c

i b b b e

f e i

s b e

 

 

 

 



  


 


 


    




     




   



  

 (45) 

 
The unknown function ( 1, 2,3)j j   can be 
obtained from (44) and (45) in which 

j  
depend only on 2  Expressing 

j  in polar 
forms as: 
 

2( )

2

1
( ) , ( 1,2,3),

2

ji

j j j jh e h h j
 

      (46)  

 
where jh  and j  are real functions and refer 
to the amplitudes and phases of the solutions 

,   and  .  
 
Because j  are dependent functions of a 
variable 2  only, the operator of the first-order 
derivative can be written in the form: 
 

2

2

; ( 1,2,3).
j jd

j
d


 

 
 


  (47) 

 
Taking into consideration the previous 
formula (47), equations (45) will be converted 

into ordinary differential equations (ODE). 
Introducing the following modified phases to 
transform the system of ODE into autonomous 
ones: 
 

1 2 2 1 1 2

2 2 2 2 2 2 3 2

3 2 2 3 3 2

( ) ( ),

( ) ( ) ( ),

( ) ( ),

     

       

     

 

  

 

  (48) 

 
Substituting (46)-(48) into (45) and separating 
real and imaginary parts to obtain the 
following desired autonomous system: 
 

 

31
3 1 1 1 3 1 1 3 1

1
3 1 1

32
3 2 2 2 2 3 2 3

2 2

3 2 2 2 3 3 2

16 8 cos 16 ,

2 sin ,

16 [16 ( )

] 12 cos ,

d
c h f c h c h

d

dh
c f

d

dd
b h h b

d d

b h b h


 







   

 

  

  



  

 

 

22
3 2 2 3 3 2

23
3 3 3 3 3 3 3

2

2 2 3 2 2 2 3

23
3 2 2 3 2 2 2 3

4 3 sin ,

3
6 ( 6 )

16

cos cos ,

6 sin sin .

dh
b b h

d

d
h h h

d

s h b f

dh
s h b f

d

  



   



  

   


 

 

 

 

(49) 

 
This system describes the modulation 
equations of both amplitudes and phases 

jh  
and ( 1, 2,3)j j   respectively, which consists 
of a system of six ODE from first order when 
three resonances occur simultaneously. On the 
other side, the solutions of this system are 
plotted in Figures.2-7 when we consider the 
following data: 
 

1 2

3 1

2 3

1

1 1 1 2 2 2

1 3 2 3 3 2

0 1

(4,10,15) , (5,9,12) ,

(3,8,12) , (0.6,1,1.5) ,

(0.5,0.9,1.5) , (0.4,0.8,1.2) ,

, , 0.2 . ,

3
0.2, 0.0205,

2

0.001 , 0.02 . .

m kg m kg

m kg m

m m

w p w p rad s

b

F N M N m

    



 

 

 

     

   

 

  

The objective of the calculations presented in 
these figures is to study the variation of 
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different values of masses jm and lengths of 
pendulum arms j , that correspond to 

j
w (j=1,2,3). Inspection of Figure.2 show 
that the behaviour of the waves 
describe the amplitude.

1h has a periodic form when jm and j are 
changed. It is remarked that the number of 
oscillations does not change with the change 
of masses, on the contrary, the amplitude of 
the waves decreases when jm increases, see
parts ( ), ( )a b  and ( )c  of Figure.2. 

Moreover, the variation of the values 1 has a 

good impact on 1h , see a part ( )d , of the 

same figure while different values of 2 and 

3  have the same effect as seen in parts ( )e
and ( )f due to the second equation in (49).

Fig.2. Represents modulation of the 

amplitude 1h versus time  at (a) 

1 (4,10,15)m kg , (b) 2 (5,9,12)m kg , (c)

3 (3,8,12)m kg , (d)
1

1 (4.04,3.13,2.55)w s  , (e) 

1
2 (4.42,3.29, 2.55)w s  , (f)

1
3 (4.94,3.5,2.85)w s  . 

Fig.3. Illustrates variation of the amplitude 

2h via  at (a) 1 (4,10,15)m kg ,

(b) 2 (5,9,12)m kg , (c) 3 (3,8,12)m kg , (d) 
1

1 (4.04,3.13,2.55) ,w s   (e) 1
2 (4.42,3.29,2.55)w s  , 

 (f) 1
3 (4.94,3.5,2.85)w s  . 

Looking closely at Figures.3 and 4, we find 
that 2h and 3h are strongly influenced by the 
change of both masses jm  and lengths j due 
to the fourth and sixth equations in (49) in 
which the number of oscillations increases and 
the amplitudes of the waves decrease to some 
extent. 

It is worthwhile to notice Figures.5 and 7 that, 
the modified phases 1 and 3 increase
gradually when time goes on, in which this 
increment is repeated many times due to the 
plane motion and the nature of these modified 
phases. 
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Fig.4. Describes variation of 3h  via   at (a) 

1 (4,10,15)m kg ,  (b) 
 2 (5,9,12)m kg , (c)

 

3 (3,8,12)m kg ,  (d)
 

1
1 (4.04,3.13,2.55)w s  , (e) 

1
2 (4.42,3.29, 2.55)w s  , (f)

 
1

3 (4.94,3.5,2.85)w s  . 

 

 
Fig.5. Represents modulation of the 

modified phase 1  versus time   at (a) 

1 (4,10,15)m kg , (b) 
 2 (5,9,12)m kg , (c)

 

3 (3,8,12)m kg , (d)
 

1
1 (4.04,3.13,2.55)w s  , (e) 

1
2 (4.42,3.29, 2.55)w s  , (f)

 
1

3 (4.94,3.5,2.85)w s  . 

 

 
Fig.6. Examines the influence of different 

values of mass 1 2 3, ,m m m  and 1 2 3, ,w w w  on the 

modified phase 2 . 

 

 

 
Fig.7. Examines the influence of different 

values of mass 1 2 3, ,m m m  and 1 2 3, ,w w w  on the 

modified phase 3 . 

 

10

On the motion of a triple pendulum system under the influence of excitation force and torque



Fig.8. Reveals the effects of variation of 

mass 1 2 3, ,m m m  and 1 2 3, ,w w w  on the 

solution 1 . 

Fig.9. Reveals the effects of variation of 

mass 1 2 3, ,m m m and 1 2 3, ,w w w  on the solution 

2 .

It is obvious that 1 has the same effect with
the change of jm and j values as indicated 
in Figure.5, while jm and j have a good
influence on the manner of 3 as mentioned
in Figure.7. On the other side, it should be 
noticed from Figure.6 that, the modified phase 

2 oscillates rapidly with short-wavelength
when jm and j increases. 

The principle aim from Figures.8-10 is to 
investigate the time history of the solutions 

( 1, 2,3)j j  when jm and j have different 
values as mentioned before. All of these 
solutions have periodic oscillations during the 
whole time which indicates that the dynamical 
motion of the considered model is stable and 
free of chaos.  

Fig.10.: Shows a variation of the time 

history of the solution 3 when 1 2 3, ,m m m  and 

1 2 3, ,w w w have different values.

Fig.11. Shows resonance curves of 

amplitudes ( 1, 2,3)jh j  as functions of 1

at 2 30.12816, 0.0205.   
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Fig.12. Shows resonance curves of 

amplitudes ( 1, 2,3)jh j   as functions of 2  

at 1 30.2, 0.0205.      

   

 
Fig.13. Presents resonance curves of 

amplitudes ( 1, 2,3)jh j   as functions of 3  

at 1 20.2, 0.12816.     

 
5 Steady-state solutions 

 

The task of this section is to investigate the 
steady-state solutions of our model that 
correspond to the zero derivative of 
amplitudes jh  and modified phases 

( 1, 2,3)j j  . Therefore, we consider  

0 ( 1,2,3)j jdh d
j

dt dt


                         (50) 

Making use of (49) and (50), we obtain the 
following algebraic equations: 

3
1 1 3 1 1 3 1

1 1

2 3
2 2 3 2 3 3 2 2

2
2 3 3 2

2
2 3 3 2

2 2
3 3 3 3 3 2 2 3 2

2 2 3
2

2 2 3 2 2 2 3

8 cos 16 0,
sin 0,

16 ( )

12 cos 0,

sin 0,
3( 6 )

16
cos cos 0,

sin sin 0.

f c h c h
f

h b b h

b h
b h

h h s h b

f
s h b f

 



   

 

 

   

 

  

  



 

 



 

  

 

 (51) 

 
Eliminating the modified phases j  from 
equations (51), yield  
 

3
1 3 1 1 3 1

2 3 2
2 2 3 2 3 3 2 2 2 3 3

2 2
3 3 3 3 3 2 2 3 2 2

8 16 0,

16 ( ) 12 0,
3( 6 ) 0.

16

f c h c h

h b b h b h

h h s h b f



    

   

  

   

   

  (52) 

 
These equations represent the frequency 
response functions clarified by the detuning 
parameters in terms of the amplitudes. 
Therefore, resonance curves are represented 
graphically in Figures.11-13. 
 
6 Nonlinear analysis 

 

This section investigates the stability of a TP 
motion as a dynamical model utilizing a non-
linear stability analysis approach. The motion 
of this model is considered under the action of 
an external harmonic force ( )F t . Criteria 
stability is achieved besides the computer 
emulation of the non-linear evolution 
equations system. Some parameters like 

,j jm
 

as well as ( 1, 2,3)j j   play a 
destabilizing role in the stabilization process. 
 
To indicate the properties of the nonlinear 
amplitude for system (49) and discuss its 
stability, the following transformations are 
introduced: 
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1 1 2 1 2

2 2 2 2 2

3 3 2 3 2

2

1 2

( 2 3 2

3 2

1 ( ( ) ( )) ,
2

)1 ( ( ) ( )) ,
2
1 ( ( ) ( )) ,
2

, , ( 1,2,3).j j j j j j

i

i

i

U iV e

U iV e

U iV e

U U V V j

 

  

 

 

 

 

    

  


  

  

   

 (53) 

Therefore, separating the real and imaginary 
parts to get: 

2 21
3 1 1 3 1 1 1 1

2 21
3 1 1 3 1 1 1

22
3 2 2 3 2 3 2 2

2 2 2
2 2 2 3 3

22
3 2 2 3 2 3 2 2

2 2 2
2 2 2 3 3

16 ( ) ( ) 8 0,

16 ( ) ( ) 0,

16 [ ( ) ]

( ) 12 0,

16 [ ( ) ]

( ) 12 0,

dVc U c U U V f
d
dUc V c V U V
d

dVb U b U
d

U V b U
dUb V b V
d

U V b V







   




   




    

   

  

   

  

   

2 2 23
3 3 3 3 3 3 3

2
2 3 2 2 2

2 2 23
3 3 3 3 3 3 3

2
2 3 2 2

8 6 ( ) 3 ( )

8( ) 0,

8 6 ( ) 3 ( )

8 0.

dV U U U V
d

s b U f
dU V V U V
d

s b V

  




  




  

  

  

 

    (54) 

The modified amplitudes were subsequently 
justified in whole time interval for different 
parametric values and the properties of the 
amplitudes are plotted in phase plane curves 
as indicated in Figures.14-22 in which the 
following data for the fixed physical values 
are considered:

1 2 3 1

0 1 2 3
1

1 1 1 2 2 2

1 3 2 3 3 2

10 , 5 , 8 , 0.02 . ,
0.001 , 1 , 0.5 , 0.8 ,

0.2 . , , , 0.005,

30.2, 0.0205, .
2

m kg m kg m kg M N m
F N m m m

rad s w p w p

b



    



   

   

      

   

Figure.14 reveals the projection of the path of 
the modulation equation on the phase plane 

1 1U V and the time history of the modified

phases 1U 1V and   with time  when 
1

1 11.5 , 2.55m w s  . Its shape can be 
circular. Also, the development of the 
amplitudes 2 2,U V and 3 2,U V versus time are
presented in Figures.15 and 16 for the same 
parameters considered in Figure.14 of the 
studied system. Moreover, Figures.17-19 
reveal the phase portrait ( 1, 2,3)j jU V j   

planes and the development of the amplitudes 
jU jV and against time under the impact of the 

variation 2 . Within this context, Figures.20-
22 examine the effect of the variation of the 
parameters 3 . 

Fig.14. The projection of the path of the 

modulation equation on 1 1U V the phase 

plane and the modified amplitudes versus 

time   when 1
1 11.5 , 2.55m w s  . 

Fig.15. Represents 2 2U V phase plane and

the history of the amplitudes 2U and 2V at 

1
1 11.5 , 2.55m w s  . 
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Fig.16. Illustrates 3 3U V  phase plane and the 

time history of the amplitudes 3U
 
and 3V at 

1
1 11.5 , 2.55m w s  .  

 

 
Fig.17. Describes 1 1U V  phase plane and the 

variation of the amplitudes 1U
 
and 1V  with 

  when 1
2 21.5 , 2.55m w s  . 

   

 
Fig.18. Shows 2 2U V  phase plane diagram 

and the variation of the amplitudes 2U  and 

2V
 
with   when 1

2 21.5 , 2.55m w s  . 

 

 
Fig.19. The projection of the path of the 

modulation equation on 3 3U V  
the phase 

plane and the modified amplitudes via time 

  at 1
2 21.5 , 2.55m w s  . 

 
Fig.20. The projection of the path of the 

modulation equation on 1 1U V  
the phase 

plane and the modified amplitudes via time 

   at 1
3 31.2 , 2.857m w s  . 

 
Fig.21. Shows 2 2U V  

phase plane diagram 

and the variation of the amplitudes 2U  and 

2V
 
with   when 1

3 31.2 , 2.857m w s  . 
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Fig.22. Describes 3 3U V  phase plane diagram 

and time history of the amplitudes 3U  and 

3V
 
when 1

3 31.2 , 2.857m w s  . 

 
Fig.23. Displays the chaotic behavior of the 

considered system. 

 

 

 
Fig.24. Poincarè map corresponding to 

chaotic motion. 

 

An inspection of figures 14-16, 17-19, and 20-
22 show that, the modified phases and 
amplitudes increase in which the last ones 
have a periodic manner.  
Also, we can observe that the chaotic motion 
in Figure.23 when the parameters take the 
following values: 
 

1 3 0
1

1

1 2 3

1 2 3

0.001, 0.0205, 30 ,

0.02 . , 0.2 . , 0.005
10 , 0.5 , 0.8 ,
10 , 5 , 8 .

F N
M N m rad s

m m m
m kg m kg m kg

 



   

   

  

  

 

 
Figure.24 reveals the Poincarè map 
corresponding to the chaotic behaviour of the 
dynamical system. Such a map plots a point in 
the phase plane every period of the trajectory. 
However, if the dynamical system admits a 
periodic solution, the corresponding Poincarè 
map is represented by a point or series of 
points as the period is a multiple of the 
forcing. If the solution is quasi-periodic, the 
Poincarè map will be illustrated by orbit. This 
plot does not seem to have any significant 
structure, which indicates that the solution is 
truly chaotic. 
 
8.  Conclusion 

 

This paper addresses the nonlinear dynamical 
motion of TP in which its pivot point moves in 
a circular path with constant angular velocity 
under the action of harmonic excitation force 
at the free end of TP and one harmonic 
moment at the point of suspension. The 
GEOM is derived using Lagrange's equations 
and is solved using MST to obtain the 
approximate solutions up to the third 
approximation. Resonance cases are classified, 
in which a combination of simultaneously 
primary external and internal resonance is 
investigated. The modulation equations are 
achieved given obtained solvability 
conditions. Time history plots of the obtained 
approximate solutions are presented, to 
describe the dynamical motion at any instant. 
Moreover, resonance curves are as well as the 
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modified amplitudes were subsequently 
justified in whole time interval for different 
parametric values and the properties of the 
amplitudes are plotted in phase plane curves. 
The stability of the considered dynamical 
model applying the nonlinear stability analysis 
approach is checked. The attained results are 
considered as generalizations of those which 
were studied previously in (Gupta et al., 2016; 
Braun, 2003; Gupta et al., 2017) (for the case 
of fixed suspension point and in absence of 
external forces and torques).  
 
References 

 
Amer, T. S., Bek, M. A. & Hamada, I. S. 

2016. On the motion of harmonically excited 
spring pendulum in the elliptic path near 
resonances, Adv Math Phys, Volume 2016, 15 
pages. 
 
Amer, T. S., Bek, M. A. &   Abouhmr, M. 

K. 2018. On the vibrational analysis for the 
motion of a harmonically damped rigid body 
pendulum, Nonlinear Dyn 91, 2485-2502. 
 
Amer, T. S., Bek, M. A. & Abouhmr, M. K. 
2019. On the motion of a harmonically excited 
damped spring pendulum in an elliptic path, 
Mech Res Commu 95, 23-34. 
 
Awrejcewicz, J., Kudra, G. & Lamarque, 

C. H. 2004. Investigation of a triple physical 
pendulum with impacts using fundamental 
solution matrices, Int J Bifur Chaos 14, 12, 
4191-4213. 
 
Awrejcewicz, J. & Kudra, G. 2005a. The 
piston-connecting rod-crankshaft system as a 
triple physical pendulum with impacts, Int. J. 
Bifurc. Chaos 15, 2207-2226. 
 
Awrejcewicz, J. & Kudra, G. 2005b. 
Stability analysis and Lyapunov exponents of 
a multi-body mechanical system with rigid 
unilateral constraints, Nonlinear Analysis 63, 
e909-e918. 
 

Awrejcewicz, J., Kudra, G. & Wasilewski, 

G. 2007. Experimental and numerical 
investigation of chaotic regions in the triple 
physical pendulum, Nonlinear Dyn 50, 755-
776. 
 
Awrejcewicz, J. 2012. Classical mechanics: 
Dynamics, Springer, Berlin. 
 
Awrejcewicz, J., Starosta, R. & Kamińska, 

G. 2013. Asymptotic analysis of resonances in  
nonlinear vibrations of the 3-of pendulum, 
Differ Equ Dyn Syst 21, 1&2, 123-140. 
 
Awrejcewicz, J., Starosta, R. & Kamińska, 

G. S. 2016. Stationary and transient resonant 
response of a spring pendulum, Procedia 
IUTAM 19, 201-208. 
 
Braun, M. 2003. On some properties of the 
multiple pendulums, Arch. Appl. Mech. 72, 
899-910. 
 
El-Sabaa, F. M., Amer, T. S., Gad, H. M. & 

Bek, M. A. 2020. On the motion of a damped 
rigid body near resonances under the influence 
of harmonically external force and moments, 
Results in Physics 19, 103352. 
 
Gupta, M. K., Sinha, N., Bansal, K. & 

Singh, A. K. 2016. Natural frequencies of 
multiple pendulum systems under free 
condition, Arch Appl Mech 86, 1049-1061. 
 
Gupta, M. K., Sharma, P., Mondal, A. & 

Kumar, A. 2017. Visual recurrence analysis 
of the chaotic and regular motion of a multiple 
pendulum system, Arab J Sci Eng 42, 2711-
2716. 
 
Jaafar, H. I., Mohamed, Z., Shamsudin, M. 

A., Mohd Subha, N. A., Ramli, L. & 

Abdullahi, A. M. 2019. Model reference 
command shaping for vibration control of 
multimode flexible systems with application 
to a double-pendulum overhead crane, Mech 
Syst Signal Process 115, 677-695. 
 

16

On the motion of a triple pendulum system under the influence of excitation force and torque



Kwiatkowski, R., Hoffmann, T. J. & 

Kołodziej, A. 2017. Dynamics of a double 
mathematical pendulum with variable mass in 
dimensionless coordinates, Procedia 
Engineering 177, 439-443. 

Kamińska, G., Starosta, R. & Awrejcewicz, 

J. 2018. Two approaches in the analytical 
investigation of the spring pendulum, Vib Phys 
Syst 29, 2018005.

Nayfeh, A. H. & Mook, D. T. 1979.  
Nonlinear Oscillations, Pure and Applied 
Mathematics, John Wiley & Sons, New York. 

Nayfeh, A. H. 2004. Perturbations methods, 
Wiley, Weinheim. 

Plissi, M. V., Torrie, C. I., Husman, M. E. 

H., Robertson,  N. A.,  Strain, K. A., Ward, 

H., Lück, H. & Hough, J. 2000. GEO 600 
triple pendulum suspension system: seismic 
isolation and control, Rev. Sci. Instrum. 71(6), 
2539-2545.  

Rajasekar, S. & Sanjuan, M. A. 2016. 
Nonlinear resonances, Springer, Berlin. 

Raymond, H. P. & Virgin, L. N. 2013. 
Pendulum models of ponytail motion during 
walking and running, J Sound Vib 332, 
3768-3780. 

Starosta, R., Kamińska, G. S. & 

Awrejcewicz, J. 2011. Parametric and external 
resonances in kinematically and externally 
excited nonlinear spring pendulum, Int J 
Bifurcat Chaos 21, 10, 3013-3021. 

Starosta, R., Kamińska, G. S. & 

Awrejcewicz, J. 2012. Asymptotic analysis of 
kinematically excited dynamical systems near 
resonances, Nonlinear Dyn 68, 459-469. 

Vakakis, A. F.; Gendelman, O. V.; 

Bergman, L.A.; McFarland, D. M.; 

Kerschen, G. & Lee, Y. S. 2009. Nonlinear 
targeted energy transfer in mechanical and 

structural systems, Springer Science Business 
Media, B.V. 

Wolfram, S. 2017. An elementary 
introduction to the Wolfram Language, 
Wolfram Media; 2nd. Edition. 

Submitted: 08/06/2020 
Revised:     14/09/2020 

Accepted:  18/10/2020 

DOI:         10.48129/kjs.v48i4.9915

17

T. S. Amer, A. A. Galal, A. F. Abolila




