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Abstract

Ramanujan’s lost notebook contains several q-series identities, and some of them have 
theta-function representations. We give partition-theoretic interpretations of some of these 
identities and prove Ramanujan-type congruences for certain partition functions.
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1. Introduction

Ramanujan’s lost notebook contains several  
q-series identities. Details of these can be
found in (Andrews & Berndt, 2009). The 
purpose of this paper is to give partition 
interpretations of some of the q-series 
identities and prove Ramanujan-type 
congruences for certain par-tition functions.

In the sequel, throughout the paper, we as-
sume that |q| < 1 always and as usual, for any
complex number a and q, we set

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1−aqk), for n ≥ 1,

and

(a; q)∞ =
∞∏
k=0

(1− aqk). (1)

For brevity, we write
(a1; q)∞(a2; q)∞(a3; q)∞ · · · (am; q)∞

= (a1, a2, a3, · · ·  , am; q)  . (2)
Several q-series identities in Ramanujan’s

∞
 lost 

notebook have representations in terms of  
Ramanujan’s theta-function f(a,b) 
(Berndt ,1991).

p. 34, (18.1)) defined by

f (a, b) =
∞∑

k=−∞

ak(k+1)/2bk(k−1)/2, |ab| < 1.

(3)
In terms of f(a, b), Jacobi’s triple product 
identity (Berndt, 1991, p. 35, Entry 19) can 
be stated as
f(a, b)  = (−a; ab)∞(−b; ab)∞(ab; ab)∞

= (−a, −b, ab; ab)∞. (4)
Three important special cases of f(a, b) are the
theta-functions φ(q), ψ(q) and f(−q) (Berndt,
1991, p. 36, Entry 22), which are given by

φ(q) : = f(q, q) =
∞∑

n=−∞

qn
2

=
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞
,

(5)

ψ(q) : = f (q, q3) =

∞∑
k=0

qk(k+1)/2 =
(q2; q2)2∞
(q; q)∞

(6)
and

f(−q) := f(−q, −q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2

= (q; q)∞, (7)
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respectively.  Ramanujan also  defined t he  function 
χ(q) (Berndt, 1991, p. 39, Entry 22(iv)) as

χ(q) = (−q; q2)∞ =
(q2; q2)2∞

(q; q)∞(q4; q4)∞
. (8)

By using elementary q-analysis, one can easily
verify that

φ(−q) =
(q; q)2∞
(q2; q2)∞

, ψ(−q) =
(q; q)∞(q4; q4)∞

(q2; q2)∞
and

χ(−q) =
(q; q)2∞
(q2; q2)∞

. (9)

With this background, we now state some q-
series identities from (Andrews & Berndt, 
2009) for which we will give partition-
theoretic interpretations in this paper.
(i) (Andrews & Berndt, 2009, p. 32, Entry
1.7.5):

∞∑
n=0

(−q2; q2)nq
n(n+1)/2

(q; q)n(q; q2)n
=

ψ(−q2)

φ(−q)
. (10)

(ii) (Andrews & Berndt, 2009, p. 32, Entry
1.7.6):

∞∑
n=0

(−q; q2)nq
(n2+3n)/2

(q; q)n(q; q2)n+1

=
f(−q,−q7)

φ(−q)
.

(11)
(iii) (Andrews & Berndt, 2009, p. 34, Entry

1.7.8):
∞∑
n=0

(−q; q2)nq
n(n+1)/2

(q; q)n(q; q2)n+1

=
f(−q3,−q5)

φ(−q)
.

(12)
(iv) (Andrews & Berndt, 2009, p. 48, Entry

2.3.3):
∞∑
n=0

(−q; q2)2nq
n(n+1)/2

(q; q)n(q; q2)n+1

=
ψ(q2)

φ(−q)
. (13)

(v) (Andrews & Berndt, 2009, p. 65, Entry
3.4.5):

∞∑
n=0

(−q; q2)nq
n

(q; q)2n+1

=
ψ(−q3)

φ(−q)
. (14)

(vi) (Andrews & Berndt, 2009, p. 85, Entry
4.2.8):

∞∑
n=0

(−1; q)nq
n2

(q; q)n(q; q2)n
=

φ(−q3)

φ(−q)
. (15)

(vii) (Andrews & Berndt, 2009, p. 87,
Entry 4.2.12):

∞∑
n=0

(−q; q)nq
n2+n

(q; q)n(q; q2)n+1

=
f(−q,−q5)

φ(−q)
. (16)

(viii) (Andrews & Berndt, 2009, p. 88,
En-try 4.2.13):

∞∑
n=0

(−q2; q2)nq
n(n+1)

(q; q2)2n+1

=
f(q, q5)

φ(−q2)
. (17)

We end this section by defining partition of a 
positive integer. A partition of a positive  integer n 
is a non-increasing sequence of positive integers, 
called parts, whose sum equals n. For example, n 
= 3 has three partitions, namely,

3, 2 + 1, 1 + 1  + 1.

If p(n) denote the number of partitions of n, 
then p(3) = 3. The generating function for 
p(n) due to Euler is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
. (18)

Ramanujan (Ramanujan, 1919) established 
fol-lowing beautiful congruences for p(n):

p(5n + 4) ≡ 0 (mod 5),
p(7n+ 5) ≡ 0 (mod 7)

and
p(11n+ 6) ≡ 0 (mod 11).

A part in a partition of n has r colours if 
there are r copies of each part available and 
all of them are viewed as distinct objects. For 
any positive integers n and r, let pr(n) denote 
the number of partitions of n where each part 
may have r distinct colours. For example, if 
each part in the partition of 3 has two colours, 
say red (indicated by the suffix r) and green 
(indicated by the suffix g), then the number of 
two colour partitions of 3 is 10, namely
3r, 3g, 2r + 1r, 2r + 1g, 2g + 1g,

2g + 1r, 1r + 1r + 1r, 1g + 1g + 1g,

1r + 1g + 1g, 1r + 1r + 1g.

The generating function of pr(n) (Berndt & 
Rankin, 1995) is given by

∞∑
n=0

pr(n)q
n =

1

(q; q)r∞
. (19)

For r = 1, p1(n) is the usual unrestricted    
partition function p(n) defined in (18).
We also note that, for positive integers k,m
and r,

1

(qk; qm)r∞
(20)
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is the generating function of the number of 
partitions of a positive integer with parts 
congruent to k modulo m (that is, ≡ k (mod
m)) and each part has r colours. Similarly,

1

(qk1 ; qm)2∞ (qk2 ; qm)2∞
=

1

(qk1 , qk2 ; qm)2∞
(21)

is the generating function of the number of par-
titions of positive integer with parts ≡ k1 or k2
(mod m) and each part has two colours.

2. Partition-Theoretic Interpretations of q-
Series Identities

In this section, we call qm as the base of the
q-product (qk; qm)∞ for positive integer m.

Theorem 2.1. Let A1(n) denote the number
of partitions of a positive integer n where the
parts are ≡ 1, 3, 4, 5 or 7 (mod 8) and each
part has two colours except the parts ≡ 4
(mod 8). Then

∞∑
n=0

A1(n)q
n =

∞∑
n=0

(−q2; q2)nq
n(n+1)/2

(q; q)n(q; q2)n

=
ψ(−q2)

φ(−q)
.

Proof. From (9), we see that
ψ(−q2)

φ(−q)
=

(q2; q2)2∞(q8; q8)∞
(q4; q4)∞(q; q)2∞

. (22)

2 2 2

Changing the base q in (q ; q )∞ to q8, we
obtain
(q2; q2)∞ = (q2; q8)∞(q4; q8)∞(q6; q8)∞(q8; q8)∞

= (q2, q4, q6, q8; q8)∞. (23)

Similarly, by changing the bases to q8 in

(q4; q4)∞ and (q; q)∞, we obtain
(q4; q4)∞ = (q4, q8; q8)∞ (24)

and
(q; q)∞ = (q, q2, q3, q4, q5, q6, q7, q8; q8)∞.

(25)
Employing (23), (24) and (25) in (22) and    

simplifying, we arrive at
ψ(−q2)

φ(−q)
=

1

(q4; q8)∞(q, q3, q5, q7; q8)2∞
.

(26)
Now the desired result follows easily from (10)
and (26).

Theorem 2.2. Let A2(n) denote the number of
partitions of a positive integer n with parts �≡ 0
(mod 8) and parts ≡ 3 or 5 (mod 8) have two
colours. Then

∞∑
n=0

A2(n)q
n =

∞∑
n=0

(−q; q2)nq
(n2+3n)/2

(q; q)n(q; q2)n+1

=
f(−q,−q7)

φ(−q)
.

Proof. Using (4) and (9), we see that
f(−q,−q7)

φ(−q)
=

(q, q7, q8; q8)∞(q2; q2)∞
(q; q)2∞

.
(27)

Changing the bases of q-products to q8, we find
that

f(−q,−q7)

φ(−q)

=
(q, q7, q8; q8)∞(q2, q4, q6, q8; q8)∞
(q, q2, q3, q4, q5, q6, q7, q8; q8)2∞

. (28)

Simplifying (28), we obtain
f(−q,−q7)

φ(−q)

=
1

(q, q2, q4, q6, q7; q8)∞(q3, q5; q8)2∞
. (29)

Now the desired result follows easily from (11)
and (29).

Theorem 2.3. Let A3(n) denote the number of
partitions of a positive integer n with parts �≡ 0
(mod 8) and parts ≡ 1 or 7 (mod 8) have two
colours. Then

∞∑
n=0

A3(n)q
n =

∞∑
n=0

(−q; q2)nq
n(n+1)/2

(q; q)n(q; q2)n+1

=
f(−q3,−q5)

φ(−q)
.

Proof. Using (4) and (9), we see that
f(−q3,−q5)

φ(−q)
=

(q3, q5, q8; q8)∞(q2; q2)∞
(q; q)2∞

. (30)

Changing the bases of q-products to q8, we find
that

f(−q3,−q5)

φ(−q)

=
(q3, q5, q8; q8)∞(q2, q4, q6, q8; q8)∞
(q, q2, q3, q4, q5, q6, q7, q8; q8)2∞

. (31)
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Simplifying (31), we obtain
f(−q3,−q5)

φ(−q)

=
1

(q2, q3, q4, q5, q6; q8)∞(q, q7; q8)2∞
. (32)

Now the desired result follows easily from (12)
and (32).

Theorem 2.4. Let A4(n) denote the number of
partitions of a positive integer n with parts �≡ 0
(mod 4) and each part has two colours. Then

∞∑
n=0

A4(n)q
n =

∞∑
n=0

(−q; q2)2nq
n(n+1)/2

(q; q)n(q; q2)n+1

=
ψ(q2)

φ(−q)
.

Proof. Using (6) and (9), we see that
ψ(q2)

φ(−q)
=

(q4; q4)2∞
(q; q)2∞

. (33)

Changing the base q in (q; q)∞ to q4 of (33)
and simplifying, we obtain

ψ(q2)

φ(−q)
=

1

(q, q2, q3; q4)2∞
. (34)

Now the desired result follows from (13) and
(34).

Theorem 2.5. Let A5(n) denote the number of
partitions of a positive integer n with parts �≡ 0
(mod 12) and parts ≡ 1, 5, 7 or 11 (mod 12)
have two colours. Then

∞∑
n=0

A5(n)q
n =

∞∑
n=0

(−q; q2)nq
n

(q; q)2n+1

=
ψ(−q3)

φ(−q)
.

Proof. Using (9), we see that
ψ(−q3)

φ(−q)
=

(q3; q3)∞(q12; q12)∞(q2; q2)∞
(q4; q4)∞(q; q)2∞

.

(35)
Changing the bases to q12 in (35) and 
simplifying, we obtain
ψ(−q3)

φ(−q)
=

1

(q2, q3, q4, q6, q8, q9, q10; q12)∞

× 1

(q, q5, q7, q11; q12)2∞
. (36)

Now the desired result follows from (14) and
(36).

Theorem 2.6. Let A6(n) denote the number of
partitions of a positive integer n with parts

≡ 1, 2, 4 or 5 (mod 6) and parts ≡ 1 or 5
(mod 6) have two colours. Then

∞∑
n=0

A6(n)q
n =

∞∑
n=0

(−1; q)nq
n2

(q; q)n(q; q2)n
=

φ(−q3)

φ(−q)
.

Proof. Using (9), we find that
φ(−q3)

φ(−q)
=

(q3; q3)2∞(q2; q2∞)

(q6; q6)∞(q; q)2∞
. (37)

2 3Changing the bases q, q and q in (37) to 
q6 and simplifying, we obtain
φ(−q3)

φ(−q)
=

1

(q2, q4; q6)∞(q, q5; q6)2∞
. (38)

Now the desired result follows from (15) and
(38).

Theorem 2.7. Let A7(n) denote the number of
partitions of a positive integer n with parts �≡
0 (mod 6) and parts ≡ 3 (mod 6) have two
colours. Then

∞∑
n=0

A7(n)q
n =

∞∑
n=0

(−q; q)nq
n2+n

(q; q)n(q; q2)n+1

=
f(−q,−q5)

φ(−q)
.

Proof. Using (4) and (9), we see that
f(−q,−q5)

φ(−q)
=
(q, q5, q6; q6)∞(q2; q2)∞

(q; q)2∞

(39)

Changing the bases of q-products to q6 in (39), 
we obtain

f(−q,−q5)

φ(−q)

=
(q, q5, q6; q6)∞(q2, q4, q6; q6)∞

(q, q2, q3, q4, q5, q6; q6)2∞
. (40)

Simplifying (40), we obtain
f(−q,−q5)

φ(−q)
=

1

(q, q2, q4, q5; q6)∞(q3; q6)2∞
.

(41)
Now the desired result follows easily from (16)
and (41).

Theorem 2.8. Let A8(n) denote the number of
partitions of a positive integer n with parts �≡
0, 3, 9 (mod 12). Then

∞∑
n=0

(−q2; q2)nq
n(n+1)

(q; q2)2n+1

=
f(q, q5)

φ(−q2)
.
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(42)

Proof. From (Berndt, 1991, p.-51, 
Example(v)), we note that

f(q, q5) = ψ(−q3)χ(q).
Using (8), (9) and (42), we obtain

f(q, q5)

φ(−q2)
=

ψ(−q3)χ(q)

φ(−q2)

=
(q3, q3)∞(q12; q12∞
(q; q)∞(q6; q6)∞

. (43)

Changing the bases of q-products to q12 in (43)
and simplifying, we obtain

f(q, q5)

φ(−q2)

=
1

(q, q2, q4, q5, q6, q7, q8, q10, q11; q12)∞
.

(44)
The desired result follows easily from (17) and
(44).

3. Ramanujan-Type Congruences for
A1(n), A4(n), A5(n) and A6(n)

In this section, the suffixes ‘r’and ‘g’in parts 
of partitions will indicate two colours red and 
green of the parts of the partitions, 
respectively.

Theorem 3.1. If A1(n) is as defined in  Theorem 
2.1, then

A1(2n + 1) ≡ 0 (mod 2).

Proof. From (Hirschhorn & Sellers, 2005),

we note that
1

φ(−q)
=

1

φ(q4)4

(
φ(q4)3 + 2qφ(q4)2ψ(q8)

+4q2φ(q4)ψ(q8)2 + 8q3ψ(q8)3
)
. (45)

Employing (45) in Theorem 2.1, we obtain
∞∑
n=0

A1(n)q
n =

ψ(−q2)

φ(q4)4

(
φ(q4)3+2qφ(q4)2ψ(q8)

+4q2φ(q4)ψ(q8)2 + 8q3ψ(q8)3
)

≡ ψ(−q2)

φ(q4)
(mod 2). (46)

Since right hand side of (46) contains no terms
involving q2n+1, extracting the terms involving
q2n+1 from (46), we arrive at the desired result.

Remark 3.2. We note that A1(3) = 6 with the 
relevant partitions given by 3r, 3g, 1r +1r + 
1r, 1r +1r +1g, 1r +1g +1g and 1g + 1g + 1g. 
This verifies Theorem 3.1.

Theorem 3.3. If A4(n) is as defined in  Theorem 
2.4, then

A4(2n + 1) ≡ 0 (mod 2).

Proof. Employing (45) in Theorem 2.4, 
we obtain

∞∑
n=0

A4(n)q
n =

ψ(q2)

φ(q4)4

(
φ(q4)3+2qφ(q4)2ψ(q8)

+4q2φ(q4)ψ(q8)2 + 8q3ψ(q8)3
)

≡ ψ(q2)

φ(q4)
(mod 2). (47)

Extracting the terms involving q2n+1 from 
(47), we arrive at the desired result.

Remark 3.4. We note that A4(3) = 10 and the 
relevant partitions are 3r, 3g, 2r + 1r, 2g + 1g, 
2r + 1g, 2g + 1r, 1r + 1r + 1r, 1r + 1r + 1g, 1r 
+ 1g + 1g and 1g + 1g + 1g. This verifies
Theorem 3.3.

Theorem 3.5. If A5(n) is as defined in  Theorem 
2.5, then

(i) A5(3n+ 1) ≡ 0 (mod 2),

(ii) A5(3n+ 2) ≡ 0 (mod 4).

Proof. From (Hirschhorn & Sellers, 2005), 
we note that

1

φ(−q)
=

φ(−q9)

φ(−q3)4

(
φ(−q9)2

+2qφ(−q9)ω(−q3) + 4q2ω(−q3)2
)
, (48)

where ω(−q) =
(q; q)∞(q6; q6)2∞
(q2; q2)∞(q3; q3)∞

.

Employing (48) in Theorem 2.5, we obtain
∞∑
n=0

A5(n)q
n =

ψ(−q3)φ(−q9)

φ(−q3)4

(
φ(−q9)2

+2qφ(−q9)ω(−q3) + 4q2ω(−q3)2
)
. (49)

Extracting the terms involving q3n+1 and q3n+2

from (49), we arrive at (i) and (ii), respectively.

Nipen Saikia



6

Remark 3.6. We note that, A5(2) = 4 with 
relevant partitions given by 2, 1r + 1r, 1r + 1g 
and 1g + 1g. This verifies Theorem 3.5(ii) for 
n = 0.

Theorem 3.7. If A6(n) is as defined in       
Theorem 2.6, then
(i) A6(3n+ 1) ≡ 0 (mod 2),

(ii) A6(3n+ 2) ≡ 0 (mod 4),

(iii) A6(9n+ 3j) ≡ 0 (mod 3),

where j = 1, 2,

(iv) A6(9n) ≡ A6(n) (mod 3).

Proof. Employing (48) in Theorem 2.6, we
obtain

∞∑
n=0

A6(n)q
n =

φ(−q9)

φ(−q3)3

(
φ(−q9)2

+2qφ(−q9)ω(−q3) + 4q2ω(−q3)2
)
. (50)

Extracting the terms involving q3n+1 and q3n+2

from (50), we arrive at (i) and (ii), respectively.
Next, extracting the terms involving q3n

from (50) and replacing q3 by q, we obtain
∞∑
n=0

A6(3n)q
n =

φ(−q3)3

φ(−q)3
≡ φ(−q9)

φ(−q3)
         (mod 3),(51)

where we used the result
φ(−q3) ≡ φ(−q)3 (mod 3) (52)

which follows from (1), (9), and the binomial 
theorem.

Since right hand side of (51) contains no 
terms involving q3n+1 and q3n+2, so 
extracting the terms involving q3n+j for j =1, 
2 from (51), we arrive at (iii).

To prove (iv), extracting the terms involving 
q3n from (51), replacing q3 by q and employing 
Theorem 2.6, we obtain

∞∑
n=0

A6(9n)q
n ≡ φ(−q3)

φ(−q)

=
∞∑
n=0

A6(n)q
n (mod 3). (53)

Extracting the coefficient of qn on both sides
of (53), we arrive at (iv).

7

Remark 3.8. We note that, A6(3) = 6 and the 
relevant partitions are given by 2 + 1r, 2 +
1g, 1r +1r +1r, 1r +1r +1g, 1r +1g +1g 
and 1g + 1g + 1g + 1g. This verifies Theorem 
3.7(iii) for j = 1 and n = 0.
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