
In recent years, the volume of traffic is one of the
major problems faced by developing nations. For
solving the congestion problem it is essential to fo-
cus on the reasons and take appropriate measures
for the regulation of traffic. Any remedial mea-
sure should consider the amount of traffic in the
future. It is important to analyze the equilibrium
state to determine the amount of traffic in the long
run. This is done by fitting a suitable mathematical
model.

Markov chain is a stochastic model for esti-
mating the long run of any system. A stochastic
process with a finite number of states satisfying
the memory-less property is called Markov chain
(Sheldon M. Ross, 2010) and is widely applied in
many real-time problems (Kazemiet al. (2011)).
Mainly it is used in the prediction of the future
trend of an organization. To analyze the equilib-

rium behavior, we consider the system when each 
input is different and unconditional.

Markov chain (MC) is a unique mathematical 
model in which the future behavior of the process 
depends only on the present. This model, consist-
ing of an ensemble of random processes with the 
possible values from the random variables called 
the states and their collection called state space. If 
the system consists of finite-state space then it is 
discrete time MC with the probabilities between 
the state transitions modeled using conditional 
prob-abilities. These probabilities are captured in 
the form of transition probability matrix (TPM).

The TPM is n × n if the MC has ′n′ states. The 
state vector is used to track the position of the 
states (Fort et al. (2008)). Olaleye et al. (2009) 
used the Markov approach for the dynamics of 
vehicular traffic. The Markov chain using Monte
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Abstract

Markov chain is a stochastic model for estimating the equilibrium of any system. It is a unique math-
ematical model in which the future behavior of the system depends only on the present. Often biased 
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chain using fuzzy environment. Indeterminacy is different from randomness due to its construction 
type where the items involved in the space are true and false in the same time. In this context as an 
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neutrosophic probabilities can be captured as neutrosophic numbers. In this paper, Markov chain based 
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1. Introduction
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consistent information that exists usually in real 
world and the analytic network process (ANP) is 
employed to know the weights of selected criteria 
by considering their interdependency. He also 
establishes a method for Reuse Strategic Decision 
Pattern Framework (RSDPF) depends on merging 
ANP and TOPSIS techniques, enabled by the OSM 
model with data analytics. This concept helps in 
statistical data mining, knowledge and heuristic 
discovery and finally domain transference 
(Mohammed et al.(2018)). In another study, he 
used neutrosophic set for decision making to an-
alyze the factors which influence the selection of 
SCM suppliers (Mohammed et al.(2018)). This 
method is considered as a proactive approach to 
improve performance and achieve competitive ad-
vantages. A real-time application on the multi-
criteria group decision-making technique is fig-
ured on neutrosophic VIKOR method, for evaluat-
ing e-government websites and to represent pref-
erences of decision-makers about criteria signifi-
cance weights and performance assessments, trian-
gular neutrosophic numbers which are applicable 
for linguistic variables (Mohammed et al. (2018)). 
Another real-life problem of an efficient model on 
neutrosophic analytic hierarchy process is used to 
solve the performance estimation problem and im-
prove the quality of services by creating a strong 
competition between cloud providers (Mohammed 
et al.(2018)). Mohammed et al. (2018) developed 
another method to evaluate the decision making 
problem in such a way that each pairwise compari-
son judgments are symbolized as a trapezoidal 
neutrosophic number and increasing the number 
of an alternative in this model.

Often biased possibilities can be used over bi-
ased probabilities for handling uncertain infor-
mation to define MC using a fuzzy environment 
(Smarandache, (2013)). Markov chains are widely 
applied in the control system in motor vehicles, 
regulation of traffic, currency exchange rate, and 
queuing system. Indeterminacy is different from 
randomness due to its construction type where the 
items involved in the space are true and false at the 
same time. In this context as an extension of 
conventional and fuzzy probabilities neutrosophic 
probability (NP) was introduced. Neutrosophic 
variable (NV) is subject to change due to random-
ness and indeterminacy in contrast to the conven-
tional stochastic (random) variable is accounted 
only for the changes due to randomness. The val-
ues of the NV represent the possible outcomes and

Carlo for studying the road interconnectivity by 
Manley (2015). Ning (2013) analyzed the 
disturbance of traffic flow along a freeway 
segment. Rui et al.(2017) discussed the traffic jam 
due to heavy vehicles. A case study on modern 
urban transport sus-tainability assessment by Syed 
Imran Hussain Shah et al. (2020).

Problems involving traffic flow need to deal 
with uncertain or insufficient data. Decision 
making problems in real-time often involve partial 
inde-terminacy and/or partial determinacy. This is 
be-cause of lack of data or other factors. Even 
though fuzzy sets introduced by Zadeh (1965) have 
the capability to handle uncertain information and 
ap-plied widely (Koukol et al. (2015); Kaufmann 
et al. (1985); Hanss, (2015)), fuzzy numbers 
cannot represent data with both determinate and 
indeter-minate information. Neutrosophic number 
(NN) captures determinate and indeterminate in 
the form of z = c +dI, where c, d are real numbers 
and ’I’ denotes indeterminacy (Smarandache 1998, 
2013, 2014). NNs have been widely applied in 
deci-sion making by Ye(2016, 2017) and fault 
diag-noses (Kong et al. (2015); Ye, (2016)). 
Pranab et al.(2018) proposed interval trapezoidal 
neutro-sophic number and specified some 
arithmetic oper-ations on interval trapezoidal 
neutrosophic number later considered multiple 
attribute decision making (MADM)  problem with 
interval trapezoidal neutro-sophic numbers. Irfan 
Deli (2017) presented a new approach on interval-
valued neutrosophic soft sets denoted by ivn-soft 
sets are defined and its used to generalize concepts 
such as soft set, fuzzy soft set, interval-valued 
fuzzy soft set, intuitionistic fuzzy soft set, interval-
valued intuitionistic fuzzy soft set and 
neutrosophic soft sets. He also defines a unique 
notation for expansion and reduction of the neu-
trosophic classical soft sets are constructed with 
real-life illustration (Irfan Deli (2018)). A single-
valued trapezoidal neutrosophic (SVTN) numbers 
with their properties are explained and various ag-
gregation operators are defined by Irfan Deli et al.
(2017, 2018). To find an alternate way for the de-
cision making problems, a new path was laid down 
by Irfan Deli (2018) called interval-valued neutro-
sophic parameterized interval-valued neutrosophic 
soft sets (ivnpivn-soft sets) and also several other 
soft sets are generalized for this notion.

Mohammed et al.(2018) developed an integrated 
framework presented via interval-valued neutro-
sophic sets to deal with vague, imprecise, and in-
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type-2 fuzzy environment. Zhu et al. (2016) 
provided the sufficient conditions for the 
ergodicity of fuzzy MCs. Liu et al. (2017) applied 
MC method in geochemical inverse problems. 
Awiszus et al. (2018) applied the concept of MC in 
neural networks. Alhabib et al. (2018) proposed 
some of the concepts in neutrosophic probability 
distributions. Petrov et al.(2019) described 
aggregated MC and applied it in rule-based 
designing. Broumi et al. (2019) stud-ied the 
shortest path problem under crisp, fuzzy, 
intuitionistic, and neutrosophic environments as an 
overview. Broumi et al. (2019) solved a shortest 
path problem using interval triangular and trape-
zoidal neutrosophic environments. Broumi et al.
(2019) extended Bellman algorithm under interval 
neutrosophic environment.

Nagarajan et al. (2019) proposed Dombi inter-
val valued neutrosophic graph and it is operational 
laws. Nagarajan et al. (2019) studied traffic con-
trol management under interval type-2 fuzzy and 
interval neutrosophic environments. From this lit-
erature study, it is evident that Markov chain con-
cept has not been studied using neutrosophic num-
bers to capture neutrosophic probabilities and thus 
serves as a motivation for this work.

The required basic concepts are briefed in Sec-
tion 2. The proposed approach of Markov chain 
based on neutrosophic numbers is presented in Sec-
tion 3. In Section 4 the foundation for the classifi-
cation of traffic states using neutrosophic Markov 
chain based on neutrosophic numbers is illustrated. 
Decision  making in traffic prediction using the 
proposed approach and the ergotic verifications for 
the traffic states based on neutrosophic numbers is 
discussed in Section 5. Comparative analysis 
between the proposed method and the existing 
method and the comparison of the equilibrium con-
dition is given in Section 6 and finally concluded in 
Section 7. 

2. Basic concepts
In this section, some of the basic concepts required 
for the present study have been given.

2.1 Markov chain

A Markov chain is a sequence of random vari-
ables X = X0, X1, X2, . . . with the following 
properties. For, n ∈ 0, 1, 2, . . ., Xn is defined on

the sample space ✵ and takes values from the finite 
set S. Thus Xn : ✵ → S. Also for n ∈ 0, 1, 2, . . . 
and {i, j, in−1, in−2, . . . , i0} ⊆ S

indeterminacies which are impartial or partial.
Neutrosophic random process (NRP) performs 

the change over time of some neutrosophic random 
values, a collection of neutrosophic random vari-
ables(Smarandache, (1998)). A neutrosophic ran-
dom variable (NRV) is a variable that has vague 
and ambiguous outcomes (indeterminate). NRV 
can be either discrete or continuous. The conven-
tional probability and neutrosophic probability will 
coincide in an experiment in which the chance of 
getting indeterminacy of a random process is zero. 
To handle imprecise state, fuzzy state and fuzzy 
transition probability (FTP) are used. Generally in 
the applications of MC, data will be collected by 
assessment or experience and this makes the data 
incomplete. This kind of problems needs to be 
handled by fuzzy MC (FMC), where FTP is the 
base of the FMC, whereas traditional MC is un-
able to deal with and analyze impreciseness in the 
decision-making problem. In FMC, TP will be a 
fuzzy number (Juan et al. (2008); Periyakumar et 
al. (2016)). The concept of neutrosophic set con-
tributes a new base for handling issues related to 
indeterminate data which may be numbers or neu-
trosophic numbers. The clarity of the study can be 
obtained by neutrosophic probability distributions.

Garcia et al. (2010) made a simulation study on 
MC under fuzzy environment. Mallak et al. (2011) 
studied ergodicity of the fuzzy MC using maxmin 
composition. Sujatha (2012) introduced intuition-
istic Markov chain and its path transition and future 
behavior. Smarandache et al. (2014) introduced the 
concepts of measurement, integral, and probability 
under a neutrosophic environment. Smarandache 
et al. (2013) introduced new concepts such as neu-
trosophic measure, neutrosophic integral, and the 
neutrosophic probability in it.

Vajargah et al. (2014) applied Faure and Kro-
necker sequences to generate the membership val-
ues of fuzzy MC and found the number of ergodic 
MCs. Kanyinda et al. (2015) introduced a method 
to calculate fuzzy eigenvalues and eigenvectors of 
a fuzzy MC. Lei et al. (2016) proposed a predic-
tion algorithm for multi aggregation and 
occasional demand forecasting with fuzzy MC. 
Smarandache et al. (2016) applied PCR5 and 
probability under neutrosophic environment to 
identify the target. Periyakumar et al. (2016) 
studied about the ergodic behavior of the FMCs. 
Garcia et al. (2016) proposed quasi MCs under
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(1)
P {Xn+1 = j/Xn = i,Xn−1 = i

− 1, Xn−2 = i− 2, ..., Xo = i0}

= P {Xn+1 = j/Xn = i}

and the transition probabilities are independent of
P {Xn+1 = j/Xn = i} = pij are independent of
n.

2.2 Neutrosophic set
Consider the spaceX consists of universal el-

ements characterized byX. The NS is a phe-
nomenon which has the structure

N = {(TN (x) , IN (x) , FN (x)) /x ∈ X} (2)

where the three grades of memberships are fromX
to ]−0,1+[ of the elementx ∈ X to the setX with
the criterion:

−0 ≤ TN (x) + IN (x) + FN (x) ≤ 3+.
The functionsTN (x) , IN (x) , and FN (x) are the
truth, indeterminate and falsity grades lies in real
standard/non-standard subsets of]−0,1+[.

2.3 Neutrosophic Markov chain
A neutrosophic stochastic process

{X (n) : n ∈ N} is said to be a neutrosophic
Markov chain if it satisfies the Markov property

β (Xn+1 = j/Xn−1 = i,Xn = k, ..., X0 = m)

= β (Xn+1 = j/Xn−1 = i)

(3)

where i, j, k establish the state spaceS of the
process. HerePijP̃ij = β (Xn+1 = j/Xn = i)
are called the intuitionistic probabilities of moving
from statei to statej in one step. HencePijP̃ij =(
T
Pij P̃ij

, I
Pij P̃ij

, F
Pij P̃ij

,
)

, where T
Pij P̃ij

is the

lows:

z1 + z2 = a1 + a2 + (u1 + u2)I

= [a1 + a2 + u1infI + u2infI, a1 + a2
+ u1supI + u2supI]

(4)

z1 − z2 = a1 − a2 + (u1 − u2)I

= [a1 − a2 + u1infI − u2infI, a1 − a2
+ u1supI − u2supI]

(5)

z1 × z2 = a1a2 + (a1u2 + a2u1)I + u1u2I
2

=




min




(a1 + u1infI)(a2 + u2infI),
(a1 + u1infI)(a2 + u2supI)
(a1 + u1supI)(a2 + u2infI),
(a1 + u1supI)(a2 + u2supI)




max




(a1 + u1infI)(a2 + u2infI),
(a1 + u1infI)(a2 + u2supI)
(a1 + u1supI)(a2 + u2infI),
(a1 + u1supI)(a2 + u2supI)







(6)

z1
z2

=
(a1 + u1I)

(a2 + u2I)
=

[a1 + u1infI, a1 + u1supI]

[a2 + u2infI, a2 + u2supI]


min

(
a1+u1infI
a2+u2supI

, a1+u1infI
a2+u2supI

, a1+u1supI
a2+u2supI

, a1+u1supI
a2+u2supI

)

max
(
a1+u1infI
a2+u2supI

, a1+u1infI
a2+u2supI

, a1+u1supI
a2+u2supI

, a1+u1supI
a2+u2supI

)



(7)
In the next section, the proposed approach is pre-

sented.

3. Markov chain based on Neutrosophic num-
bers

A mathematical model with a set of states and
the conditional probabilities of transition between
them satisfying memory-less property is called a
Markov chain. If these probabilities are neutro-
sophic probabilities, then we have a neutrosophic
Markov chain. Neutrosophic probability(NP ) of
an eventE is defined asNP (E)=(chance that the
event may occur, indeterminate chance between
the event occur, chance that the event may not oc-
cur)(Smarandache. (2013)).

Mathematically, a sequence of neutrosophic
random variablesXn is said to be a neutro-
sophic Markov chain if it satisfies the memory-
less property given byNP (Xn+1 = j/Xn =
i,Xn−1, . . . , X0) = NP (Xn+1 = j/Xn = i).

truth membership of the transition from state i to
state j and I

Pij ˜ij 
is the indeterminate membership

P

of the transition from state i to state j and F
Pij ˜ij 

is
P

the falsity membership of the(
Pij P̃

transition

ij 

) 
is

from

called

state

thei to state j. The matrix P =
neutrosophic transition probability matrix.

2.4 Operations on neutrosophic numbers
Let Z denote the set of all real neutrosophic

numbers. For any two NNs z1 = a1 + u1I and
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This means the future state depends only on the
present and not the past. The conditional neutro-
sophic probabilityNP (Xn+1 = j/Xn = i) =
(NP )ij is called the transition neutrosophic prob-
ability from statei to statej. If the system hass
states, then these probabilities can be represented
by a s × s square matrixNP called the neutro-
sophic transition matrix (NTM).

The transition neutrosophic probability from
state i to state j denoted by(NP )ij is taken in the
form of neutrosophic number(NP )ij = aij + bijI
whereaij ∈ [0, 1], bij ∈ [0, 1], I ∈ [0, 1]. Here
we are representing neutrosophic probability using
neutrosophic numbers, so it will be appropriate to
choose the components of the neutrosophic num-
ber to lie in the interval[0, 1]. Since we are deal-
ing with neutrosophic probabilities the indetermi-
nacy value should be very small. The calculations
of powers of the neutrosophic transition matrix use
the arithmetic operations on neutrosophic numbers
given below.

3.1 Neutrosophic probability after k-steps
Let NP (0) = (NP1(0)NP2(0) . . . NPs(0))

denote the initial neutrosphic vector, whereNPi(0)
denote the neutrosophic probability of being in
statei initially at time step zero. Then the neutro-
sophic probability of being in statej after k time
steps isNP (k) = (NP1(k)NP2(k) . . . NPs(k)).
This can be calculated using matrix multiplication
of neutrosophic numbers as

NPj(k) =

s∑

i=1

NPi(k − 1)NPij (8)

be reached from every other state in a finite num-
ber of steps. In other words,NP

(n)
ij > 0 for some

n andfor all i andj. The transition probability ma-
trix of an irreducible neutrosophic Markov chain is
an irreducible matrix. Otherwise, the neutrosophic
Markov chain is said to be non-irreducible. Here
the concept of irreducible in neutrosophic Markov
chain is well-defined since all the entries ofNP

(n)
ij

is of the form a + Ib where a, b ∈ [0, 1] and
I ∈ [0, 1].

Example: Consider the current traffic sit-
uation as a set of states, (i.e.) S =
{Low,Medium,High, V eryHigh}. Theneutro-
sophic transition matrix for the state-Sis given by

NP =




0.01 + 12.5I 0.85 + 0.5I
I 0 + 0I

0.01 + 16I 0.01 + I
0.56 + I 0.23 + I

0 + 0I 0.01 + 21.49I
I 0.76 + 0.5I

0 + 0I 0.01 + 3.5I
0.95 + 0.5I I




(9)

where,I ∈ [0, 0.01], and the corresponding state
transition diagram is given in Figure-1. In the
NTM, the value0 + 0I means, there is no possi-
bility of state transition from the state ’High’ to the
state ’Low’ directly. Here all the states are clearly
irreducible and it will perfectly match the current
traffic scenrio in the sense, if the traffic is very high
it will not go to the state ’Low’ directly, either it
will go the state ’High’ or it will go to the state
’Medium’ and then it will come to the state ’Low’
in a finite no of steps and it is clearly illustrated in
Figure-1.
Periodicity: For a recurrent state i,NP

(n)
ii >

0 for all n. We define the period asµi =

GCD
{
n : NP

(n)
ii > 0

}
, hereGCD denotes the

greatest common divisor. InS, the stateLow − L
is said to be periodic with periodµi if µi > 1 and
aperiodic ifµi = 1 and similarly for all other states.
All the states in the Figure-4 are aperiodic.
Non-null persistent: If the states of the neutro-
sophic Markov chain are finite and irreducible then
all its states are non-null persistent. All the states
in the Figure-1 are non-null persistent.
Ergodic neutrosophic Markov chain: A neutro-
sophic Markov chain{X (n) : n ∈ N} based on
neutrosophic numbers is said to be ergodic if it is

Hence, NP (k) = NP (k − 1)NP , where NP is
the neutrosophic transition matrix. Also note that,
NP (k) = NP (k − 1)NP = NP (k − 2)(NP )2.

3.2 Equilibrium study of neutrosophic Markov
chain

It is significant to analyze the equilibrium study
of any system.
limk→∞NP (k) = limk→∞NP (k − 1)NP .

This becomes, ENP = (ENP )NP , where neu-
trosophic row vector ENP denotes equilibrium
situation of neutrosophic Markov chain.

4. Classification of States

Irreducible neutrosophic Markov Chain:A neu-
trosophic Markov chain based on neutrosophic
numbers are said to be irreducible if every state can

5

Kuppuswami Govindan, Sujatha Ramalingam, Nagarajan Deivanayagampillai,Said Broumi, Kavikumar Jacob



Very

High
High

Low Medium
0.85+0.5I

0.01+16I

0.75+0.5I

0.95+0.5I

I

0
.0

1
+

3
.5

I

0
.2

3
+

I

0.0
1+21.4

9I

0.5
6+I

0.01+12.5I

I

0.01+I

I

Fig. 2. Google map satellite image for
Velachery-Vijayanagar junction

Fig. 3. Traffic flow of three roads

the main cities in India. The Google Maps satel-
lite image is depicted in Figure 1. This junction
is one of the busy junctions, with residential com-
plexes, colleges, shopping malls, schools, and bus
stands. Thus, it is important to regulate the traffic in
this junction to avoid traffic stagnation. To analyze
the traffic flow at this junction, the traffic volume
was collected for a while in two consecutive years.
Based on this data, in this paper, two approaches
based on neutrosophic linear equations and Markov
chain based on neutrosophic sets are proposed to
study traffic flow. Neutrosophic numbers and neu-
trosophic Markov chain deal effectively with un-
certain information. By neutrosophic linear equa-
tions, the possible traffic flow volume is calculated.
Based on this, to calculate the possible proportion
of vehicles in different ranges in the long- term

Fig. 1. State transition diagram for the irreducibil-
ity of the traffic states

both non-null persistent and aperiodic. The pur-
pose of verifying ergodicity in the neutrosophic
Markov chain is to verify the stability of the traf-
fic states and also it guarantees the corresponding
neutrosophic Markov chain based on neutrosophic
numbers become independent of the initial state
and the nth step as n → ∞. This implies that
NP (n) converges to a neutrosophic matrix with
identical rows as n → ∞. We recollect the fol-
lowing theorems without proof based on the rela-
tion between the ergoticity and equilibrium state
for the classical Markov and finally we discuss how
the theorems perfectly matching with the proposed
approach.
Theorem-1: (Sheldon M.Ross 2010) For any
irreducible, aperiodic Markov chain, the limit-
ing state probabilities vj = limn→∞pj (n) = 
limn→∞pij (n) exist and are independent of the
initial probability vector p(0).
Theorem-2: (Sheldon M.Ross 2010) For an aperi-
odic Markov chain, the limits vj = limn→∞pj (n) 
exist.

5. Decision making in traffic prediction

In recent years, the volume of traffic is one often
of the major problems faced by developing nations.
For solving the congestion problem it is essential to
focus on the reasons and take appropriate measures
for the regulation of traffic. Any remedial mea-
sure should consider the amount of traffic in the
future. It is important to analyze the equilibrium
state to determine the amount of traffic in the long
run. This is done by fitting a suitable mathematical
model. Problems involving traffic flow need to deal
with uncertain or insufficient data.

In this work, we consider Velachery-Vijayanagar
junction, the three road junction in Chennai, one of

6
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neutrosophic Markov chain is used.

5.1 Traffic flow problem analysis using neutro-
sophic equations

To determine the number of vehicles the concept
of neutrosophic linear equations is used. In Figure
2, we have considered the traffic junction at Chen-
nai. Figure 3, indicates the traffic flow with direc-
tion on each one-way road.

Based on the data, the maximum capacity of
road 1 is 2000. The flow of traffic is controlled
by signals installed at the intersection points. The
neutrosophic numberz = 500 + I is a combina-
tion of determinate and indeterminate components,
whereI indicate indeterminacy. The introduction
of indeterminacy guarantees no traffic stagnation in
the junction. For this, we need to find the range of
the number of vehicles flowing in each direction,
denoted byx1, x2. To ensure no traffic stagnation,
all vehicles entering the intersection have to leave
the intersection. Due to this condition, we have the
following system of neutrosophic linear equations,
given by

3500 = x1 + z; (10)

4500 = x1 + x2; (11)

z = 500 + I. (12)

Solving the above system, we obtain

x1 = 3000− I; (13)

x2 = 1500 + I. (14)

Case-1: The state space is S =
{Low − L,High−H}. The description of
the state space is as follows: less than 1000
correspond to state low(L), above 1000 correspond
to state high(H). From table 1, the derived neutro-
sophic Markov chain with neutrosophic transition
matrix given by,

NP =

[
0.6 + 0.2I 0.3 + 0.4I
0.4 + 0.5I 0.5 + 0.3I

]
Since thein-

determinacy should be very small, we choose the
indeterminacyI ∈ [0, 0.01].

Let NP =

[
z11 z12
z21 z22

]
be the matrix. Then,

NP 2 is given by

[
z11 z12
z21 z22

] [
z11 z12
z21 z22

]
=

[
z11 × z11 + z12 × z21 z11 × z12 + z12 × z22
z21 × z11 + z22 × z21 z21 × z12 + z22 × z22

]

(15)

Then(1, 1) element ofNP 2 is given by

NP 2
11 = (z11 × z11) + (z12 × z21) (16)

Now,
z11 × z11 =[
min((0.6× 0.6), (0.6)(0.6 + 0.2× 0.01),
max((0.6× 0.6), (0.6)(0.6 + 0.2× 0.01),

(0.6 + 0.2× 0.01)(0.6),
(0.6 + 0.2× 0.01)(0.6),

(0.6 + 0.2× 0.01)(0.6 + 0.2× 0.01))
(0.6 + 0.2× 0.01)(0.6 + 0.2× 0.01))

]

=

[
min(0.36, 0.3612, 0.3612, 0.3624)
max(0.36, 0.3612, 0.3612, 0.3624)

]

= 0.36 + 0.3624I

(17)

z12 × z21 =[
min((0.3× 0.4), (0.3)(0.4 + 0.5× 0.01),
max((0.3× 0.4), (0.3)(0.4 + 0.5× 0.01),

(0.3 + 0.4× 0.01)(0.4),
(0.3 + 0.4× 0.01)(0.4),

(0.3 + 0.4× 0.01)(0.4 + 0.5× 0.01))
(0.3 + 0.4× 0.01)(0.4 + 0.5× 0.01))

]

=

[
min(0.12, 0.1215, 0.1216, 0.123)
max(0.12, 0.1215, 0.1216, 0.123)

]

= 0.12 + 0.123I

(18)

NP 2
11 = (0.36+ 0.3624I) + (0.12+ 0.12312I)

In this junction, the possible traffic flow varies from
600 to 700 (i.e.) z = [600, 700], then the range
of the traffic flow x1 = [2800, 2900] and x2 = 
[1600, 1700]. Based on the data, it was observed
that the number of vehicles varies during different
time intervals. To reflect this indeterminacy, the
possible traffic flow with respect to different ranges
is calculated and the results are shown in table 1.

From table 1, one may note that the traffic flow
varies concerning traffic range. To determine the
possible proportion of vehicles in different ranges,
we use neutrosphic Markov approach. For fitting
neutrosophic Markov chain, the traffic volume is
counted for some time in two consecutive years
and classified. Depending on the total number of
vehicles, the states of the neutrosophic Markov
chain are defined.
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Table 1. Traffic flow for different ranges

I z x1 x2

0 500 3000 1500
[100, 200] [600, 700] [2900, 2800] [1600, 1700]
[200, 300] [700, 800] [2800, 2700] [1700, 1800]
[300, 400] [800, 900] [2700, 2600] [1800, 1900]
[400, 500] [900, 1000] [2600, 2500] [1900, 2000]
[500,600] [1000, 1100] [2500, 2400] [2000, 2100]
[600, 700] [1100, 1200] [2400, 2300] [2100, 2200]
[700, 800] [1200, 1300] [2300, 2200] [2200, 2300]
[800, 900] [1300, 1400] [2200, 2100] [2300, 2400]
[900, 1000] [1400, 1500] [2100, 2000] [2400, 2500]
[1000, 1100] [1500, 1600] [2000, 1900] [2500, 2600]
[1100, 1200] [1600, 1700] [1900, 1800] [2600, 2700]
[1200, 1300] [1700, 1800] [1800, 1700] [2700, 2800]
[1300, 1400] [1800, 1900] [1700, 1600] [2800, 2900]
[1400, 1500] [1900, 2000] [1600, 1500] [2900, 3000]
[1500, 1600] [2000, 2100] [1500, 1400] [3000, 3100]
[1600, 1700] [2100, 2200] [1400, 1300] [3100, 3200]
[1700, 1800] [2200, 2300] [1300, 1200] [3200, 3300]
[1800, 1900] [2300, 2400] [1200, 1100] [3300, 3400]
[1900, 2000] [2400, 2500] [1100, 1000] [3400, 3500]

= ((0.36+0.12), (0.36+0.12+0.3624×0.01+
0.123× 0.01))

= (0.48, 0.48485524) = 0.48 + 0.48485524I

Thus,we get

NP 2 =

[
0.48 + 0.48485524I
0.44 + 0.44447525I

0.33 + 0.3333592I
0.37 + 0.37376129I

] (19)

NP 4 =

[
0.3756 + 0.379432265I
0.374 + 0.377815941I

0.2805 + 0.283361956I
0.1844874 + 0.186369746I

] (20)

NP 8 =

[
0.2459824 + 0.248492132I
0.2459798 + 0.248489546I

0.1844849 + 0.18636716I
0.1844874 + 0.186369746I

] (21)

NP∞ =

[
0.2459824 + 0.248492132I
0.2459798 + 0.248489546I

0.1844849 + 0.18636716I
0.1844874 + 0.18636974I

] (22)

After the seventh iteration the matrix reached an
equilibrium state. Equation (22), reveals that Low-
Low possibility is 0.2459 + 0.2484I and High-
High possibility is0.1844 + 0.1863I, whereI ∈
[0, 0.01].
Case-2: In many practical situations the traffic is
not always low or high, there is a possibility of
transferring from any state(Low, High) to Medium
and vice-versa. So, we take this as an important
state for the traffic prediction and consider as the
second state inS. We analyze the equilibrium
state and in addition as a new technique the er-
goticity is verified in neutrosophic Markov chain
based on neutrosophic numbers. The state space is
S = {Low–L,Medium−M,High−H}. Here
the description for the state space′M ′ correspond
to the range 1000-2000 and the remaining state as
mentioned in Case-1. Similarly the neutrosophic
transition matrix for this three state is obtained

The neutrosophic transition matrix in the equi-
librium is
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Low

HighMedium

0.28+0.3 I

0
.3

+
0
.1

 I

0
.5

+
0
.4

 I

0
.2

+
0
.2

 I

0
.2

+
0
.1

 I

0.6+0.2 I

0.58+0.2 I

0.19+0.1I0.1+0.1I

Fig. 4. State transition diagram based on neutro-
sophic numbers for the traffic states

from table-1 is given by

NP =



0.28 + 0.3I 0.5 + 0.4I 0.2 + 0.1I
0.3 + 0.1I 0.1 + 0.1I 0.58 + 0.2I
0.2 + 0.2I 0.6 + 0.2I 0.19 + 0.1I




(23)

whereI ∈ [0, 0.01].

Let NP =



z11 z12 z13
z21 z22 z23
z31 z32 z33


 be the matrix.

Then,NP 2 is given by



z11 × z11 + z12 × z21 + z13 × z31
z21 × z11 + z22 × z21 + z23 × z31
z31 × z11 + z32 × z21 + z33 × z31

z11 × z12 + z12 × z22 + z13 × z32
z21 × z12 + z22 × z22 + z23 × z32
z31 × z12 + z32 × z22 + z33 × z32

z11 × z13 + z12 × z23 + z13 × z33
z21 × z13 + z22 × z23 + z23 × z33
z31 × z13 + z32 × z23 + z33 × z33




(24)
Using (6) and (24) the value of

(NP )2=(NP )(NP ) is given by



0.2684 + 0.2723I
0.23 + 0.2331I
0.274 + 0.2769I

0.31 + 0.3145I
0.508 + 0.5122I
0.274 + 0.2775I

0.384 + 0.388I
0.2282 + 0.2304I
0.4241 + 0.4274I




(25)

Similarly proceeding we get the value of
(NP )13=(NP )(NP )12 is



0.2117 + 0.2156I
0.2123 + 0.2154I
0.2139 + 0.2172I

0.2847 + 0.2154I
0.2854 + 0.2893I
0.2877 + 0.2920I

0.2799 + 0.2850I
0.2807 + 0.2847I
0.2828 + 0.2871I




(26)

(NP )14 =



0.2082 + 0.2120I
0.2088 + 0.2118I
0.2104 + 0.2136I

0.2800 + 0.2851I
0.2808 + 0.2849I
0.2829 + 0.2872I

0.2753 + 0.2803I
0.2760 + 0.2800I
0.2781 + 0.2824I




(27)

(NP )15 =



0.2048 + 0.2085I
0.2054 + 0.2083I
0.2069 + 0.2101I

0.2754 + 0.2805I
0.2761 + 0.2801I
0.2782 + 0.2825I

0.2707 + 0.2757I
0.2715 + 0.2754I
0.2735 + 0.2777I




(28)

(NP )16 =



0.2014 + 0.2051I
0.2020 + 0.2049I
0.2035 + 0.2066I

0.2708 + 0.2758I
0.2716 + 0.2755I
0.2736 + 0.2778I

0.2662 + 0.2711I
0.2670 + 0.2708I
0.2690 + 0.2731I




(29)

So(NP )∞ =
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

0.2014 + 0.2051I
0.2020 + 0.2049I
0.2035 + 0.2066I

0.2708 + 0.2758I
0.2716 + 0.2755I
0.2736 + 0.2778I

0.2662 + 0.2711I
0.2670 + 0.2708I
0.2690 + 0.2731I




(30)

After the sixteenth iteration the matrix reached
an equilibrium state. Since we have to give special
attention to high traffic volume, here we consider
only the possibility of transferring any state to the
state High. Equation (30), reveals that the possibil-
ity of any state too High is0.26 + 0.27I, where
I ∈ [0, 0.01]. These values reflect the amount
of traffic in the considered Velechery-Vijayanagar
junction. If the same condition prevails, in the fu-
ture we can control the traffic flow volume for this
junction. According to the above results, we can
fix the time slot in the traffic signal light system
governing this junction.

To understand the concept in a better way,
the steady state graph is drawn with the help of
the neutrosophic transistion matrix for different
values ofI = {0.0025, 0.005, 0.0075, 0.01}. We
take theX − axis units from 1 − 16, since the
matrix reaches steady state after the16th step
and theY − axis is the corresponding proba-
bility values. As an example, takeI = 0.0025
and substitute in the 1-step neutrosophic tran-
sition matrix (Equation-23), we get one set of
nine values (i.e.) NP11 = 0.2807, NP12 =
0.501, NP13 = 0.2002, NP21 = 0.3002, NP22 =
0.1002, NP23 = 0.5805, NP31 =
0.2005, NP32 = 0.6005 and NP33 = 0.1902.
Similarly substituting the value ofI = 0.0025
upto n = 16, we get ’16’ sets of ’9’ values for
plotting the graphs. In Figure-5, aftern = 16 all
the curves converges to a unique point, (i.e.) the
matrix reaches the equilibrium state. Similarly, we
proceed with remaining ’I’ values.

5.2 Verification of ergoticity for the states of the
traffic in neutrosophic Markov chain

Classifications of states:First we verify the ir-
reducibility of the states′S′ in the traffic. Figure-4
gives the state transition diagram of the3× 3 neu-
trosophic matrix based on neutrosophic numbers.

If we consider the first stateLow, in the16th step

Fig. 5. Steady state for different’I’ values

the possibilityof being the traffic in the stateLow−

Low is given byNP
(16)
11 = 0.2014 + 0.2051I >

0where I ∈ [0, 0.01]. In general, the irreducibility
of all the traffic statesS in the nth step forn =
1, 2, 3... is given by

NP
(n)
11 > 0, NP

(n)
12 > 0, NP

(n)
13 > 0.

NP
(n)
21 > 0, NP

(n)
22 > 0, NP

(n)
23 > 0.

NP
(n)
31 > 0, NP

(n)
32 > 0, NP

(n)
33 > 0.

(31)

Therefore the neutrosophic Markov chain is irre-
ducible. Next, we find the period of all the traffic
states.

For the1st traffic state’Low’, we have

NP 1
11 > 0, NP 2

11 > 0, . . .
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Table 2. Equilibrium stateof the neutrosophic Markov chain(Method-1)

I NP1 NP2 NP3

0.0025 0.2019 0.2715 0.2669
0.005 0.2024 0.2722 0.2676
0.0075 0.2029 0.2729 0.2683
0.01 0.2034 0.2736 0.2690

Table 3. Equilibrium state of the neutrosophic Markov chain(Method-2)

I ENP1 ENP2 ENP3

0.0025 0.1914 0.2883 0.2486
0.005 0.1918 0.2890 0.2492
0.0075 0.1923 0.2897 0.2498
0.01 0.1928 0.2905 0.2505

Table 4. Comparison of the Equilibrium states

I NP1 ENP1 NP2 ENP2 NP3 ENP3

0.0025 0.2019 0.1914 0.2715 0.2883 0.2669 0.2486
0.005 0.2024 0.1918 0.2722 0.2890 0.2676 0.2492
0.0075 0.2029 0.1923 0.2729 0.2897 0.2683 0.2498
0.01 0.2034 0.1928 0.2736 0.2905 0.2690 0.2505

Period of the traffic state

Low = GCD {1, 2, 3, ...} = 1.

For the2nd traffic state’Medium’, we have

NP 1
22 > 0, NP 2

22 > 0, . . .

Period ofthe traffic state

Medium = GCD {1, 2, 3, ...} = 1.

Similarly for the3rd traffic state’High’, we have

NP 1
33 > 0, NP 2

33 > 0, . . .

Period ofthe traffic state

Here both the theorems in the classical Markov
is very well matching with the proposed work.
As per theorem-1, here we verified that in any
irreducible, aperiodic neutrosophic Markov chain
based on neutrosophic numbers, the equilibrium
state exists for the3 × 3 neutrosophic matrices,
theorem-2 is clearly true in neutrosophic Markov,
(i.e.) for any aperiodic neutrosophic Markov chain,
the equilibrium state exists.

6. Comparative analysis

Here the comparative analysis has been done in
Table-5 between the classical Markov and neu-
trophic Markov based on neutrosophic numbers to
understand the newly introduced method in a bet-
ter way and the major role played by the neutro-
sophic Markov chain to identify the traffic states in
the equilibrium position. Analytically, the equilib-
rium state of the neutrosophic Markov chain can be
obtained as the solution of(ENP )NP = ENP ,
whereENP is a row vector of neutrosophic num-
bers which constitute the equilibrium state of the
neutrosophic Markov chain andNP is the neutro-
sophic transition matrix. For the neutrosophic tran-
sition matrix is given in equation (23), the equi-
librium position for different levels of indetermi-
nacy ′I ′ is obtained by findinglimk→∞NP (k),

High = GCD {1, 2, 3, ...} = 1.

(32)

All the three traffic states {Low, Medium, 
High} having period 1. So the three traffic states
are aperiodic. The traffic states are finite and
irreducible, the neutrosophic Markov chain is non-
null persistent. Here both the conditions, aperiodic
and non-null persistent are satisfied and hence the
neutrosophic Markov chain is ergodic.
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Table 5. Comparative analysis between neutrosophic Markov based on neutrosophic numbers with the
classical Markov

S.No Neutrosophic Markov Classical Markov
1. Recently developed method

deals with indeterminacyoccurs
in the system.

Very traditional method in which
the future depends only on the
present. Not suitable for the sys-
tem where uncertainty and inde-
terminacy occurs.

2. Very suitable technique for pre-
dicting the traffic, since some of
the concepts for the traffic con-
gestion are indeterminant (Su-
jathaet al. 2019) .

Does not have the capability of
dealing with indeterminacy of
the traffic.

3. Transition between the states
are neutrosophic numbers in the
NTM. Due to the presence of
indeterminacy, NTM is not a
stochastic matrix.

Transition between the states
have probabilistic values in the
TPM. TPM is a stochastic ma-
trix.

4. Neutrosophic transition matrix
based on neutrosophic numbers
are multiplied by min-max oper-
ation.

Transition probability matrices
are multiplied by usual matrix
multiplication.

5. Equilibrium state of the neutro-
sophic Markov chain using neu-
trosophic numbers reveals the
possibility of the transition of
the traffic states accurately to
predict the traffic.

The probability of transition
from one traffic state to another
in the steady state is less accu-
rate, since some of the traffic
concepts are indeterminant.

6. For the traffic states stability,
verification of ergoticity can be
reached in minimum number of
steps.

Irreducibility verification of traf-
fic states itself takes maximum
steps compared to the proposed
method.
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Fig. 6. The equilibrium state for different’I’values
(Method-1)

Fig. 7. The equilibrium state for different ’I’
values.(Method-2)

condition of the system. Through this analysis, the
possibility of the changes in the traffic states are
also determined. On the other hand, the results of
the comparative study for the equilibrium condition
in both the methods are approximately equal. All
the concepts are illustrated in graphs. Further, to
study the stability of the traffic states the ergodic
properties are verified for the neutrosophic Markov
chain using neutrosophic numbers.

The purpose of the proposed work is as fol-
lows: This method provides an effective way in
decision-making to manage traffic congestion
in an indeterminate environment. This model
can be applied to predict and decide traffic flow
management in any road junction. We believe this
method would be very useful to the transportation
department in advance, to identify the traffic
condition in any part of the world. Also, the
proposed work can be applied in real-life problems
like weather prediction, stock marketing etc to
make decision. Further, as a research prospect, it
can also be enhanced as a hidden Markov model
using neutrosophic numbers in decision making.

References

Alhabib, R., Ranna, M. M., Farah, H. &
Salama, A. A. (2018). Some neutrosophic prob-
ability distributions. Neutrosophic Sets and Sys-
tems, 22 :30-38.

Awiszus, M. & Rosenhahn, B.(2018).Markov
chain neural networks. IEEE/CVF Conference on
Computer Vision and Pattern Recognition
Workshops (CVPRW).

Broumi, S., Talea, M., Bakali, A., Smarandache,
F., Nagarajan, D., Lathamaheswari, M. &
Parimala, M. (2019). Shortest path problem in
fuzzy, intuitionistic fuzzy and neutrosophic en-
vironment: an overview. Complex & Intelligent
Systems, 5:371-378.

Broumi, S., Nagarajan, D., Bakali, A., Talea,
M., Smarandache, F. & Lathamaheswari, M.
(2019). The shortest path problem in interval
valued trapezoidal and triangular neutrosophic
environment. Complex & Intelligent Systems,
5 :391-402.

Broumi, S., Dey, A., Talea, M., Bakali,
A.,Smarandache, F., Nagarajan, D., Lathamah
eswari, M. & Kumar, R. (2019). Shortest path

Fig. 8. Comparison of Method-1 and Method-2

(Method-1) and (ENP )NP = ENP (Method-2)
is tabulated in table-2 and table-3 and the corre-
sponding graphs is given in Figure-6 and Figure-7.

Further, the comparison between the equilibrium
states for both the methods are presented in table-4.
The comparison is depicted in the graph. From the
Figure-8, we observe that the equilibrium position
by both methods are approximately equal.

7. Summary and Conclusion

This paper presents a new neutrosophic Markov
model based on neutrosophic numbers. This new
mathematical model is applied to predict the traf-
fic. Three traffic states are defined according to the
range using the collected real-time traffic volume.
The prediction is done by analyzing the equilibrium

13

Kuppuswami Govindan, Sujatha Ramalingam, Nagarajan Deivanayagampillai,Said Broumi, Kavikumar Jacob



problem using Bellman algorithm under neutro-
sophic environment. Complex & Intelligent Sys-
tems, 5 :409-416.

Fort, G., Meyn, S., Moulines, E. & Priouret, P.
(2008). The ODE method for stability of skip-
free Markov chains with applications to Markov
chain. The Annals of Applied Probability,
18 :664-707.

Garcia, J. C. F. (2010). Interval type-2 fuzzy
Markov chains. In Fuzziness and Soft Comput-
ing, 301 :1-6.

Garcia, J. C. F., Arcos, L. C. G. & Rivera, S. K.
L. (2016). Quasi type-2 fuzzy Markov chains:
An approach. IEEE International Conference on
Fuzzy Systems(FUZZ-IEEE).

Hanss, M. (2005). Applied fuzzy arithmetic:
an introduction with engineering applications.
Springer, Germany.

Irfan Deli. (2017). Interval-valued neutrosophic
soft sets and its decision making. International
Journal of Machine Learning and Cybernetics,
8 :665–676.

Irfan Deli. (2018). Expansions and reductions on
neutrosophic classical soft set. Journal of Natu-ral
and Applied Sciences, 22: 478-486.

Irfan Deli & Yusuf Subas. (2017).Some weighted
geometric operators with SVTrN-numbers and
their application to multi-criteria decision mak-ing
problems. Journal of Intelligent and Fuzzy
Systems, 32 :291-301.

Irfan Deli. (2018). Operators on single valued
trapezoidal neutrosophic numbers and SVTN-
group decision making. Neutrosophic Sets and
Systems, 22 :131-150.

Juan, C., Garcia, F., Kalenatic, D. & Bello, C. A.
L. (2018). A simulation study on fuzzy Markov
chains. International Conference on Intelligent
Computing, 109-117.

Kanyinda, J. P. M., Matendo, R. M. M., Lukata,
B. U. E. & Ibula, D. N.(2015). Fuzzy eigenval-
ues and fuzzy eigen vectors of fuzzy Markov
chain transition matrix under max-min compo-
sition. Journal of Fuzzy Set Valued Analysis,
1 :25-35.

Kaufmann, A. & Gupta, M. M.(1985). Introduc-
tion to fuzzy arithmetic. Van Nostrand Reinhold
Company, USA.

Kazemi, A., Modarres, M., Mehregan, M. R.,
Neshat, N. & Foroughi, A. A.(2011). Markov
chain grey forecasting model: A case study of
energy demand of industry sector in Iran. Inter-
national Conference on Information and Finan-
cial Engineering IPEDR, IACSIT Press, Singa-
pore. 12 :13-18.

Kong, L., Wu, Y. & Ye, J.(2015). Misfire fault
diagnosis method of gasoline engines using the
cosine similarity measure of neutrosophic num-
bers. Neutrosophic Sets and Systems, 8 :43-46.

Koukol, M., Zajilkova, L., Marek, L. & Tulek, P.
(2015). Fuzzy logic in traffic engineering: A re-
view on signal control. Mathematical Problems in
Engineering, 2015 :1-14.

Lei, M., Li, S. & Tan, Q. (2016). Intermittent de-
mand forecasting with fuzzy markov chain and
multi aggregation prediction algorithm. Journal of
Intelligent and Fuzzy Systems, 31 :2911-2918.

Liu, B. & Liang, Y. (2017). An introduction of
Markov chain Monte Carlo method to geochem-
ical inverse problems: Reading melting param-
eters from REE abundances in abyssal peri-
dotites. Geochimica et Cosmochimica Acta,
203 :216–234.

Mallak, S. F., Marabeh, M. M. A. & Ziqan, A.
(2011). A Particular class of ergodic finite fuzzy
Markov chains. Advances in Fuzzy Mathemat-ics,
6(2) :253-268.

Manley, E. (2015).Estimating urban traffic pat-
terns through probabilistic inter-connectivity of
road network junctions. Plos One, 10(5) :1-17.

Mohammed, A. B., Manogaran, G., Gamal. A.
& Smarandache, F. (2018). A hybrid approach of
neutrosophic sets and DEMATEL method for
developing supplier selection criteria. De-sign
Automation for Embedded System, 22 : 257–
278.

Mohammed, A. B., Zhou, Y., Mohammed,
M.& Chang, V. (2018). A group decision
making framework based on neutrosophic
VIKOR approach for e-government website
evaluation.

14

Markov chain based on neutrosophic numbers in decision making



Journal of Intelligent and Fuzzy Systems,
34(6) :4213–4224.

Mohammed, A.B., Mohammed, M. & Chang,
V. (2018). NMCDA: A framework for evaluat-
ing cloud computing services. Future Genera-
tion Computer Systems, 86 :12-29.

Mohammed, A. B., Atef, A. & Smarandache,
F.(2018). A hybrid neutrosophic multiple crite-ria
group decision making approach for project
selection. Cognitive Systems Research, 1-12.

Nagarajan, D., Lathamaheswari, M., Broumi, S.
& Kavikumar, J.(2019). Dombi interval valued
neutrosophic graph and its role in traffic control
management. Neutrosophic Sets and Systems,
24 :114-133.

Nagarajan, D., Lathamaheswari, M., Broumi,
S. & Kavikumar, J. (2019). A new perspective on
traffic control management using triangular
interval type-2 fuzzy sets and interval neutro-
sophic sets. Operations Research Perspectives,
6:1-13.

Ning, Wu. (2013). A stochastic model for
reliability analysis in freeway networks.
Procedia-Social and Behavioral Sciences,
96 :2823-2834.

Olaleye, O. T., Sowunmi, F. A., Abiola, O.S.,
Salako, M. O. & Eleyoowo, I. O.(2009). A
Markov chain approach to the dynamics of
vehicular traffic characteristics in
Abeokutametropolis. Research Journals of Applied
Sci-ences, Engineering and Technology,
1 :160-166.

Petrov, T. (2019). Markov chain aggregation and
its application to rule-based modelling. In book:
Modeling Biomolecular Site Dynamics,
1945 :297-313.

Periyakumar, J.A., Sreevinotha, V. (2016).On
the ergodic behaviour of fuzzy Markov chains.
IOSR Journal of Mathematics (IOSR-JM),
12(5) :28-34.

Pranab, B., Surapati, P., Abiola, O. S. & Bibhas,
C. G.(2018). Distance measure based MADM
strategy with interval trapezoidal neutrosophic
numbers. Neutrosophic Sets and Systems,
19 :40-46.

Rui, J., Cheng, J. J., Zhang, H. M., Huang, Y. 
X., Tian, J. F., Hu, M. B., Wang, H.& Jia, B.
(2017). Experimental and empirical investi-gations
of traffic flow instability. Transportation Research
Procedia, 23 :157-173.

Sheldon, M. Ross. (2010).Introduction to proba-
bility  models, 10th edition. Academic Press an
Imprint of Elsevier.

Smarandache, F. (1998). Neutroso-
phy:Neutrosophic Probability, Set and Logic.
American Research Press, Rehoboth, USA.

Smarandache, F.(2013). Introduction to
Neutrosophic Measure, Neutrosophic
Integral and Neutrosophic Probability,
Sitech & Educational, Craiova, Columbus.
(http://fs.unm.edu/NeutrosophicMeasureIntegral
Probability.pdf).

Smarandache, F. (2014). Introduction to
Craiova,Neutrosophic Statistics. Sitech:

Romania, Education Publishing, USA.
(http://fs.unm.edu/NeutrosophicStatistics.pdf)

Smarandache, F., Abbas, N., Chibani, Y., Had-
jadji, B. &  Omar, Z. A.(2016). PCR5 and
neutrosophic probability in target identification.
Progress in Nonlinear Dynamics and Chaos,
4(2) :45-50.

Sujatha, R. (2012).An introduction to intuition-
istic Markov chain. International Mathematical
Forum, 7(50) : 2449-2456.

Sujatha, R., Kuppuswami, G., Vasantha Kan-
dasamy. W. B. &  Said Broumi. (2019). An ap-
proach for study of traffic congestion problem
using fuzzy cognitive maps and neutrosophic
cognitive maps-the case of Indian traffic. Neu-
trosophic Sets and Systems, 30 :273-283.

Syed Imran Hussain Shah., Rab Nawaz., Saj-
jad Ahmad., Muhammad Arshad., Rabiya
Nasir., Muhammad Yaseen., Sabiha-Javied, &
Muhammad Atif Irshad. (2020). Sustain-bility
assessment of modern urban transport and its
role in the reduction of greenhouse gas
emissions: A case study of Metro Bus Sys-
tem(MBS), Lahore. Kuwait Journal of Science,
47(2) :67-81.

15

Kuppuswami Govindan, Sujatha Ramalingam, Nagarajan Deivanayagampillai,Said Broumi, Kavikumar Jacob



16

Vajargah, B. F. & Gharehdaghi, M. (2014). Er-
godicity of fuzzy Markov chains based on simu-
lation using sequences. Journal of Mathematics
and Computer Science, 11 :159-165.

Ye, J. (2016). Multiple-attribute group decision-
making method based on linguistic neutrosophic
numbers. Journal of Intelligent Systems,
25 :377-386.

Ye, J. (2016). Fault diagnoses of steam turbine us-
ing the exponential similarity measure of neu-
trosopic numbers. Journal of Intelligent and
Fuzzy Systems, 30(4) :1927-1934.

Ye, J. (2017). Bidirectional projection method for
multiple attributed group decision making with
neutrosophic numbers. Neural Computing and
Applications, 28(5) :1021-1029.

Zadeh, L. A. (1965). Fuzzy sets. Information and
Control, 8 :338-353.

Zhu, D. M., Ching, W. K. & Guu, S. M. (2016).
Sufficient conditions for the ergodicity of fuzzy
Markov chains. Fuzzy Sets and Systems, 30:82-93.

Submitted: 30/05/2020
Revised: 01/12/2020
Accepted: 15/12/2020
DOI:         10.48129/kjs.v48i4.9849

Markov chain based on neutrosophic numbers in decision making




