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Abstract

In this paper, we study quasilinear Volterra integro-differential equations (VIDEs). Asymptotic estimates are made 
for the solution of VIDE. Finite difference scheme, which is accomplished by the method of integral identities using 
interpolating quadrature rules with weight functions and remainder term in integral form, is presented for the VIDE. 
Error estimates are carried out according to the discrete maximum norm. It is given an effective quasilinearization 
technique for solving nonlinear VIDE. The theoretical results are performed on numerical examples.
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1. Introduction

In this research, we consider the following quasilinear 
Volterra integro-differential initial value problem:

         (1)

                                                                      (2)

where  and  is a given constant and  
 and   

are given sufficiently smooth functions and moreover 

Volterra integro-differential equations (VIDEs) are 
typical mathematical models in many areas of science. 
The solution of VIDEs has been identified as important in 
physics, engineering, chemistry and biology. 

For instance, Kirchoff’s second law is considered as 
follows:

where  is the current function, R is the resistance, L is 
the inductance and C is the capacitance (Zill & Warren, 
2013). On the other hand, Wilson-Cowan model describes 
the dynamics of interactions between populations:

where initial conditions ,  
and    and  represent the activity 
of a population of excitatory and inhibitory neurons, 
respectively.  describes the strength of connection , 

 and  are positive parameters.  and  are external 
inputs (Singh et al., 2018).

For numerical solutions of these equations, numerous 
methods have been presented by some authors. Adomian 
decomposition method (Biazar et al., 2003; Goghary et 
al., 2005; Wazwaz, 2010), Galerkin method (Maleknejad 
& Kojani, 2004), collocation method (Aguilar & Brunner, 
1988; Laib et al., 2018), iterative and non-iterative 
methods (Ramos, 2009), homotopy perturbation method 
(Yusufoglu, 2007), Tau method (Mahmoud et al., 2005) 
and variational iteration method (Wang & He, 2007) are 
among these. Recently, the studies of these problems 
have become significant and have been investigated 
with different properties. Singularly perturbed VIDEs 
are considered by many authors. An exponentially fitted 
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difference scheme is constructed for these equations 
(Amiraliyev & Sevgin, 2006). For singularly perturbed 
VIDEs with smooth kernel, the coupled method (LDG-
CFEM) is used (Tao & Zhang, 2019). The difference 
scheme and its convergence properties are examined for 
singularly perturbed VIDEs on a graded mesh (Sevgin, 
2014). Moreover, more different studies are seen. Finite 
difference method is examined for first-order VIDEs 
(Cimen, 2018). In addition, for high-order linear VIDEs, 
a new numerical method with Taylor polynomials is 
developed (Laib et al., 2018). Considering more varied 
methods, implicit Runge-Kutta method is applied 
for approximate solution of VIDEs (Brunner, 1984). 
A computational method is developed for numerical 
solution of a nonlinear VIDE of fractional order (Saeedi 
& Mohseni, 2011). By using Euler polynomials, VIDEs 
of pantograph-delay type are examined (Mirzaee et al., 
2016)  and  nonlinear Volterra delay integro differential 
equations have been studied (Gan, 2007). Besides, for 
high-order integro differential equations with weakly 
singular kernel, a Galerkin-like method is used (Yüzbaşı 
& Karaçayır, 2016).

In this study, our purpose is to present finite difference 
method, which is founded by the method of integral 
identities using basis functions and interpolating 
quadrature rules with weight and remainder term in 
integral form. This method is first applied to nonlinear 
VIDEs. Unlike other methods, our method yields more 
accurate results for these equations.

Notations. Throughout the paper,  and  are generic 
positive constants that are independent of the mesh 
parameter. For any continuous function  defined on 
the corresponding interval, we use the maximum norm 

2. Continuous problem

In this section, we give some asymptotic behavior of 
the exact solution, which is needed in the analysis of 
numerical method.

Lemma 1. Let  and  Then 
for the solution  of the problem (1)-(2), the following 
estimates hold:

                                                                       (3)

and

                                                                       (4)

where

and

Proof. Applying the mean value theorem to functions in 
Equation (1), we get

  

Then, we can write Equation (1) in the form

              (5)

where

and

From (5), we have

From here, we take

                                        (6)
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Applying Gronwall’s inequality to inequality (6), we 
obtain

which leads to (3).

Now, we prove inequality (4). From Equation (5), we 
take

 

which immediately leads to (4).

3. Discretization and mesh

is a non-uniform mesh to a set of discrete points.  points 
are called node points and  is a meshsize. 
Before describing our numerical method, we define some 
notation for the mesh functions. For any mesh function 

 defined on , we use

To generate the difference method, we begin the 
following integral identity

                (7)

Now, we separately evaluate each term of Equation 
(7). For , we use interpolating quadrature rules 
in Amiraliyev & Mamedov (1995) for each term. For the 
first term on the right side of Equation (7), we get

where the truncation error is

For the second term on the right side of Equation (7), 
we have

where

               (8)

For the third term on the right side of Equation (7), 
we obtain

where

           (9)

Using the right side rectangle rule for integral term 
involving kernel function, we have

where

              (10)

Then, we can write the following difference problem 
for approximation of VIDE:

            (11)

                                        

                                                                    (12)

where

                                                (13)

Thus, by neglecting , we obtain the difference 
scheme in the following form:
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                          (14)

                                               

                                                                        (15)

4. Error estimates

For the investigation of the uniform convergence of this 
method, let  be the solution of the problem (1)-(2) and 
let  be the solution of the problem (14)-(15). Error 
function  is the solution of the 
following discrete problem:

            (16)

                                                                         (17)

where  is given by Equation (13).

Lemma 2. Let  be the solution of (16)-(17). Then, the 
estimate

                                                 (18)

holds.

Proof. Using the mean value theorem for the functions in 
Equation (16), we take

where

 are intermediate points called for by the mean value 
theorem. From here, we have

                           (19)

                                           

Applying the difference analogue of Gronwall’s 
inequality to (19), we obtain

where

which implies the validity of (18).

Lemma 3. Assume that the mesh function  is the solution 
of initial value problem

                    (20)

                                                                        (21)

with  and  is a nondecreasing function. Then 
for the solution of (20)-(21), the following inequality 
holds:

                            (22)

Proof. First, we note that for the difference operator 
 the maximum principle holds in the form: If any 

mesh function   and  then 
  Since  is a nondecreasing

the barrier functions can be written in the following 
form:

It follows that

Thereby, according to the maximum principle, 
 which proves (22).

Lemma 4. Under the condition of Lemma 1, for the 
remainder term  of scheme (14)-(15), the following 
estimate satisfies

                                                           (23)

Proof. Now, we separately evaluate the remainder terms 
in Equation (13). First, we prove Equation (8). From the 
relation Equation (8) and taking into account Lemma 1, 
we obtain
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                                                 (24)

For Equation (9), we have

                                                 (25)

Next, from Equation (10), we get

                                                 (26)

Finally, substituting the inequalities (24), (25) and (26) 
in Equation (13), we obtain inequality (18).

From the two previous lemmas, we immediately obtain 
the main result of the following paper.

Theorem 1. Let  be the solution of the problem (1)-
(2) and let  be solution of the approximate problem (14)-
(15). Then the following estimate satisfies

                                                 (27)

Proof. Let . Then, from the 
discrete problem (16)-(17) we can rewrite it in the form

                                (28)

                                                                         (29)

After applying Lemma 3 to the discrete problem (28)-
(29), we get  

From here, by using the difference analogue 
of Gronwall’s inequality, we obtain the following 
inequality:

                                       (30)

Further, from Lemma 4, we see that

                                                           (31)

From the inequalities (30) and (31), we arrive at (27).

5. Algorithm and numerical results

In this section, we present the numerical results for 
difference scheme (14)-(15). Because of the nonlinear 
term, we use the quasilinearization technique. Applying 
this technique to difference scheme (14)-(15), we obtain  

If the elimination method is taken into consideration, 
we have

where
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The stopping criterion is

and  is the initial process. Then, the difference 
scheme is tested on the following examples. Exact errors 
are determined as

where  is the exact solution and  is the approximate 
solution.

Example 1. We consider the following nonlinear Volterra 
integro-differential equation:

with . The exact solution of the equation is 
. The computational results are presented in 

Table 1. In addition, the obtained results from Table 1 are 
shown in Figure 1.

Table 1. Error approximations for Example 1.

0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

1.000000000

0.882496902

0.778800783

0.687289278

0.606530659

0.535261428

0.472366552

0.416862019

0.367879441

1.000000000

0.879922493

0.778748879

0.694229264

0.623990032

0.565788861

0.517629831

0.477799240

0.444850916

0.000000000

0.002574410

0.000051904

0.006939985

0.017459372

0.030527432

0.045263278

0.060937220

0.076971475

Fig. 1. Comparison of  and  for Example 1.

Example 2. We take into account another nonlinear 
Volterra integro-differential equation:

The exact solution of this equation is unknown. Thus, 
we use the double-mesh principle to estimate the errors 
and compute the experimental rates of convergence in the 
computed solution. That is, we compare the computed 
solution with the solution on a mesh that is twice as fine 
(Amiraliyev & Duru, 2005; Cakir & Amiraliyev, 2007). 
The error estimates are denoted by

The convergence rates are calculated as follows:

Error approximations and convergence rates for 
Example (2) are given in Tables 2-3.

Error approximations which are obtained from Tables 
2-3 are shown in Figures 2-3 for some values of .
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Table 2. Error approximations and convergence rates for different values of N.

N = 8 N = 16 N = 32 N = 640.02970507 0.01615199 0.00845788 0.004334730.01608326 0.00845792 0.00433440 0.002195150.88514899 0.93333706 0.96446294 0.98162238
Table 3. Error approximations and convergence rates for different values of N.

N = 128 N = 256 N = 512 N = 10240.00219515 0.00110470 0.00055415 0.000277530.00110470 0.00055415 0.00027753 0.000138880.99065946 0.99530439  0.99763936 0.99881619

Fig. 2. Error approximations for N = 32. Fig. 3. Error approximations for N = 128.

Example 3. We tackle the following initial value 
problem:

The exact solution of this equation is unknown. Using 
the double mesh principle, we find experimental rates 
of convergence. The computational results are shown in 
Table 4.

Table 4. Error approximations and convergence rates for different values of N.

N = 128 N = 256 N = 512 N = 10240.00038189 0.00019341 0.00009733 0.000048820.00019342 0.00009733 0.00004882 0.000024450.98140912 0.99074969 0.99534816 0.99765610
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6. Discussion and Conclusion

In this study, we have presented a new and effective 
numerical method for the quasilinear Volterra integro-
differential equations. The stability of the solution for 
continuous problem was examined by using the maximum 
principle, and the difference schemes were taken according 
to the discrete maximum norm. In the numerical algorithm, 
the quasilinear technique was used because of nonlinear 
terms. The theoretical results were tested on samples. 
It is shown from the tables that the numerical results 
confirm the theoretical results. Numerical investigations 
can be carried out for the various types such as delay and 
singularly perturbed equations with different physical 
properties.
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