A completely monotonic function involving the gamma and trigamma functions

Feng Qi^{1,2,3}

¹Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China ²College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China

³Dept. of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China Corresponding author: qifeng618@gmail.com

Abstract

In this paper the author provides necessary and sufficient conditions on a for the function

$$\frac{1}{2}\ln(2\pi) - x + (x - \frac{1}{2})\ln x - \ln\Gamma(x) + \frac{1}{12}\psi'(x+a)$$

and its negative to be completely monotonic on $(0, \infty)$, where $a \ge 0$ is a real number, $\Gamma(x)$ is the classical gamma function, and $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ is the digamma function. As applications, some known results and new inequalities are derived.

Keywords: Completely monotonic function; gamma function; inequality; logarithmically completely monotonic function; trigamma function.

1. Introduction

It is well known that the classical Euler gamma function is defined by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

for x > 0, that the logarithmic derivative of $\Gamma(x)$ is called the psi or digamma function and denoted by

$$\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

for x > 0, that the derivatives $\psi'(x)$ and $\psi''(x)$ for x > 0 are respectively called the trigamma and tetragamma functions, and that the derivatives $\psi^{(i)}(x)$ for $i \in \mathbb{N}$ and x > 0 are called polygamma functions.

We recall from Mitrinović *et al.* (1993) and Widder (1946) that a function f(x) is said to be completely monotonic on an interval I, if it has derivatives of all orders on I and satisfies

$$0 \le (-1)^n f^{(n)}(x) < \infty \tag{1}$$

for $x \in I$ and all integers $n \ge 0$. If f(x) is non-constant, then the inequality (1) is strict (Dubourdieu, 1939). The class of completely monotonic functions may be characterized by

the celebrated Bernstein-Widder Theorem (Widder, 1946), which reads that a necessary and sufficient condition that f(x) should be completely monotonic in $0 \le x < \infty$ is that

$$f(x) = \int_0^\infty e^{-xt} d\alpha(t),$$

where $\alpha(t)$ is bounded and non-decreasing and the integral converges for $0 \le x < \infty$.

For $x \in (0, \infty)$ and $a \ge 0$, let

$$F_a(x) = \ln \Gamma(x) - (x - \frac{1}{2}) \ln x - \frac{1}{12} \psi'(x + a).$$

Merkle (1998) proved that the function $F_0(x)$ is strictly concave and the function $F_a(x)$ for $a \ge \frac{1}{2}$ is strictly convex on $(0,\infty)$. This was surveyed and reviewed in Qi (2010).

In recent years, some new results on the complete monotonicity of functions involving the gamma and polygamma functions have been obtained (Guo & Qi, 2012a; Guo & Qi, 2012b; Guo & Qi, 2013a; Guo & Qi, 2013b; Guo *et al.*, 2012; Li *et al.*, 2013; Lü *et al.*, 2011; Qi & Berg, 2013; Qi *et al.*, 2013a; Qi *et al.*, 2013b; Qi *et al.*, 2012; Srivastava *et al.*, 2012; Zhao *et al.*, 2011; Zhao *et al.*, 2012b), for example.

The aims of this paper are to generalize the convexity of the function $F_a(x)$ and to derive known results and some new inequalities.

2. Complete monotonicity

The first aim of this paper is to generalize the convexity of $F_a(x)$ to complete monotonicity, which may be stated as Theorem 1 below.

Theorem 1 For $x \in (0, \infty)$ and $a \ge 0$, let

$$f_a(x) = \frac{1}{2}\ln(2\pi) - x + (x - \frac{1}{2})\ln x - \ln\Gamma(x) + \frac{1}{12}\psi'(x+a).$$

Then the functions $f_0(x)$ and $-f_a(x)$ for $a \ge \frac{1}{2}$ are completely monotonic on $(0,\infty)$.

Proof. Using recursion formulas $\Gamma(x+1) = x\Gamma(x)$ and

$$\psi'(x+1) - \psi'(x) = -\frac{1}{x^2}$$

for x > 0, an easy calculation yields

$$f_a(x) - f_a(x+1) = 1$$

$$+ (x + \frac{1}{2}) \ln(\frac{x}{x+1})$$

$$+ \frac{1}{12} [\psi'(x+a) - \psi'(x+a+1)]$$

$$= 1 + (x + \frac{1}{2}) \ln(\frac{x}{x+1}) + \frac{1}{12(x+a)^2}$$

and

$$[f_a(x) - f_a(x+1)]' = \frac{1}{2(x+1)} + \frac{1}{2x} - \frac{1}{6(a+x)^3} + \ln(\frac{x}{x+1}).$$

Utilizing formulas

$$\Gamma(z) = k^z \int_0^\infty t^{z-1} e^{-kt} dt$$

and

$$\ln\frac{b}{a} = \int_0^\infty \frac{e^{-au} - e^{-bu}}{u} du$$

for Re(z) > 0, Re(k) > 0, a > 0 and b > 0, (Abramowitz & Stegun, 1972), gives

$$[f_{a}(x) - f_{a}(x+1)]'$$

$$= \int_{0}^{\infty} \left[\frac{1}{2}e^{-t} + \frac{1}{2} - \frac{1}{12}t^{2}e^{-at} + \frac{e^{-t} - 1}{t}\right]e^{-xt}dt$$

$$\triangleq \int_{0}^{\infty} \phi_{a}(t)e^{-xt}dt.$$
(2)

It is easy to see that

$$\phi_0(t) = -\frac{(t^3 - 6t + 12)e^t - 6(t + 2)}{12te^t}$$
$$= -\frac{1}{12e^t} \sum_{i=4}^{\infty} \frac{(i-3)(i^2 - 4)}{i!} t^{i-1} < 0$$

and

$$\phi_{1/2}(t) = \frac{6(t-2)e^{t} - t^{3}e^{t/2} + 6(t+2)}{12te^{t}}$$

$$= \frac{1}{12e^{t}} \sum_{i=5}^{\infty} \frac{(i-2)(3 \cdot 2^{i-2} - i^{2} + i)}{i! \cdot 2^{i-3}} t^{i-1} > 0$$

on $(0,\infty)$, where the inequality $3 \cdot 2^{i-2} - i^2 + i > 0$ for $i \ge 5$ may be verified by induction. As a result, the function

$$[f_0(x+1) - f_0(x)]' = f_0'(x+1) - f_0'(x)$$

and

$$[f_{1/2}(x) - f_{1/2}(x+1)]'$$

= $f_{1/2}'(x) - f_{1/2}'(x+1)$

are completely monotonic on $(0, \infty)$, that is,

$$(-1)^{k} [f_{0}'(x+1) - f_{0}'(x)]^{(k)}$$

$$= (-1)^{k} f_{0}^{(k+1)}(x+1) - (-1)^{k} f_{0}^{(k+1)}(x)$$

$$\geq 0$$

and

$$(-1)^{k} [f_{1/2}'(x) - f_{1/2}'(x+1)]^{(k)}$$

$$= (-1)^{k} f_{1/2}^{(k+1)}(x) - (-1)^{k} f_{1/2}^{(k+1)}(x+1)$$

$$\geq 0$$

for $k \ge 0$. By induction, we have

$$(-1)^{k} f_{0}^{(k+1)}(x) \leq (-1)^{k} f_{0}^{(k+1)}(x+1)$$

$$\leq (-1)^{k} f_{0}^{(k+1)}(x+2)$$

$$\leq (-1)^{k} f_{0}^{(k+1)}(x+3) \leq \cdots$$

$$\leq (-1)^{k} \lim_{m \to \infty} f_{0}^{(k+1)}(x+m)$$
(3)

and

$$(-1)^{k} f_{1/2}^{(k+1)}(x) \ge (-1)^{k} f_{1/2}^{(k+1)}(x+1)$$

$$\ge (-1)^{k} f_{1/2}^{(k+1)}(x+2)$$

$$\ge (-1)^{k} f_{1/2}^{(k+1)}(x+3) \ge \cdots$$

$$\ge (-1)^{k} \lim_{m \to \infty} f_{1/2}^{(k+1)}(x+m)$$
(4)

for $k \ge 0$.

It is not difficult to obtain

$$f_{a'}(x) = \frac{\psi''(a+x)}{12} - \psi(x) + \ln x - \frac{1}{2x}$$

and

$$f_a^{(i)}(x) = \frac{\psi^{(i+1)}(a+x)}{12} - \psi^{(i-1)}(x) + \frac{(-1)^i(i-2)!}{x^{i-1}} + \frac{(-1)^i(i-1)!}{2x^i}, \quad i \ge 2.$$

In the light of the double inequalities

$$\ln x - \frac{1}{x} < \psi(x) < \ln x - \frac{1}{2x}$$

and

$$\frac{(i-1)!}{x^{i}} + \frac{i!}{2x^{i+1}} < |\psi^{(i)}(x)| < \frac{(i-1)!}{x^{i}} + \frac{i!}{x^{i+1}}$$
 (5)

for x > 0 and $i \in \mathbb{N}$, (Guo & Qi, 2011b; Guo & Qi, 2010c; Qi & Guo, 2010a, and Qi *et al.* (2010), we immediately derive

$$\lim_{x \to \infty} f_{a'}(x) = 0 \quad \text{and} \quad \lim_{x \to \infty} f_a^{(i)}(x) = 0$$

for $i \ge 2$ and $a \ge 0$. Combining this with (3) and (4), we deduce

$$(-1)^k f_0^{(k+1)}(x) \le 0$$
 and $(-1)^k f_{1/2}^{(k+1)}(x) \ge 0$ (6)

for $k \ge 0$ on $(0, \infty)$.

From the formula

$$\ln \Gamma(z) = \left(z - \frac{1}{2}\right) \ln z - z + \frac{1}{2} \ln(2\pi) + 2 \int_0^\infty \frac{\arctan(t/z)}{e^{2\pi t} - 1} dt \quad (7)$$

for Re(z) > 0, (Abramowitz & Stegun, 1972), and the double inequality (5) for i = 1, we easily obtain

$$\lim_{x \to \infty} f_a(x) = 0 \tag{8}$$

for $a \ge 0$. Inequalities in (6) imply that the functions $-f_0(x)$ and $f_{1/2}(x)$ are increasing on $(0,\infty)$. Hence, we have

$$f_0(x) > 0$$
 and $f_{1/2}(x) < 0$ (9)

on $(0, \infty)$.

From (6) and (9), we conclude that the functions $f_0(x)$ and $-f_{1/2}(x)$ are completely monotonic on $(0, \infty)$.

It is clear that

$$-f_a(x) = -f_{1/2}(x) + \frac{1}{12} \left[\psi'(x + \frac{1}{2}) - \psi'(x + a) \right].$$

From the facts that the trigamma function

$$\psi'(x) = \int_0^\infty \frac{t}{1 - e^{-t}} e^{-xt} dt$$

for x>0, (Abramowitz & Stegun, 1972), is completely monotonic on $(0,\infty)$, that the difference $f(x)-f(x+\alpha)$ for any given real number $\alpha>0$ of any completely monotonic function f(x) on $(0,\infty)$ is also completely monotonic on $(0,\infty)$, and that the sum of finitely many completely monotonic functions on an interval I is still completely monotonic on I, it readily follows that the function $-f_a(x)$ for $a>\frac{1}{2}$ is also completely monotonic on $(0,\infty)$. The proof of Theorem 1 is complete.

3. Necessary and sufficient conditions

The second aim of this paper is to answer a natural problem: Find the best constants $\alpha \ge 0$ and $\beta \le \frac{1}{2}$ such that $f_{\alpha}(x)$ and $-f_{\beta}(x)$ are both completely monotonic on $(0,\infty)$.

Theorem 2. The function $f_{\alpha}(x)$ is completely monotonic on $(0,\infty)$ if and only if $\alpha=0$, and so is the function $-f_{\beta}(x)$ if and only if $\beta \geq \frac{1}{2}$.

Proof. The first proof. The conclusion that the function $\phi_a(t)$ defined in (2) is positive or negative on $(0,\infty)$ is equivalent to

$$a \ge -\frac{1}{t} \ln\left[\frac{12}{t^2} \left(\frac{e^{-t} + 1}{2} + \frac{e^{-t} - 1}{t}\right)\right]$$

$$\triangleq -\varphi(t) = -\frac{1}{t} \ln \varphi_1(t), \quad t > 0.$$
(10)

By the L'Hôspital rule, we have

$$\lim_{t \to 0^{+}} \varphi_{1}(t) = 6 \lim_{t \to 0^{+}} \frac{t(e^{-t} + 1) + 2(e^{-t} - 1)}{t^{3}}$$

$$= 2 \lim_{t \to 0^{+}} \frac{e^{-t}(e^{t} - t - 1)}{t^{2}} = 1$$

and $\lim_{t\to\infty} \varphi_1(t) = 0$. Hence, the function $\varphi(t)$ can be represented as

$$\varphi(t) = \frac{\ln \varphi_1(t) - \ln \varphi_1(0)}{t} = \frac{1}{t} \int_0^t \frac{\varphi_{1'}(u)}{\varphi_1(u)} du$$

$$= -\frac{1}{t} \int_0^t \frac{2(u-3)e^u + u^2 + 4u + 6}{u[(u-2)e^u + u + 2]} du$$

$$\triangleq -\frac{1}{t} \int_0^t \varphi_2(u) du$$

for t > 0. Since

$$-\{u^{2}[(u-2)e^{u}+u+2]^{2}\}\varphi_{2}(u)$$

$$=2(u^{2}-6u+6)e^{2u}$$

$$+(u^{4}+8u^{2}-24)e^{u}+2(u^{2}+6u+6)$$

$$=\sum_{i=8}^{\infty}\frac{2^{i-1}(i^{2}-13i+24)+i^{4}}{i!}u^{i}$$

$$+\sum_{i=8}^{\infty}\frac{-6i^{3}+19i^{2}-14i-24}{i!}u^{i}$$
> 0

for u > 0, where

$$2^{i-1}(i^{2}-13i+24)+i^{4}-6i^{3}$$

$$+19i^{2}-14i-24$$

$$=(1+1)^{i-1}(i^{2}-13i+24)+i^{4}$$

$$-6i^{3}+19i^{2}-14i-24$$

$$>i(i^{2}-13i+24)+i^{4}-6i^{3}$$

$$+19i^{2}-14i-24$$

$$=(i-5)i^{3}+6i^{2}+2(5i-12)>0$$

for $i \ge 8$, the function $\varphi_2(u)$ is strictly decreasing on $(0, \infty)$, and, by Qi *et al.* (1999) and Qi & Zhang (1999), the arithmetic mean

$$-\varphi(t) = \frac{1}{t} \int_0^t \varphi_2(u) du$$

is strictly decreasing, and $\varphi(x)$ is strictly increasing, on $(0,\infty)$. From the L'Hôspital rule and limits

$$\lim_{u\to 0^+} \varphi_2(u) = \frac{1}{2} \quad \text{and} \quad \lim_{u\to \infty} \varphi_2(u) = 0,$$

we obtain

$$\lim_{t\to 0^+} \varphi(t) = -\frac{1}{2} \quad \text{and} \quad \lim_{t\to \infty} \varphi(t) = 0.$$

As a result, from (10), it follows that

- 1. when a = 0, the function $[f_a(x+1) f_a(x)]'$ is completely monotonic;
- 2. when $a \ge \frac{1}{2}$, the function $[f_a(x) f_a(x+1)]'$ is completely monotonic.

Along with the corresponding argument as in the proof of Theorem 1, we obtain that the sufficient condition for $f_a(x)$ or $-f_a(x)$ to be completely monotonic on $(0,\infty)$ is a = 0 or $a \ge \frac{1}{2}$ respectively.

Conversely, if $-f_a(x)$ is completely monotonic on $(0,\infty)$, then $f_a(x)$ is increasing and negative on $(0,\infty)$, so

 $x^2 f_a(x) < 0$ on $(0, \infty)$. From the double inequality

$$\frac{1}{2x^2} - \frac{1}{6x^3} < \frac{1}{x} - \psi'(x+1) < \frac{1}{2x^2} - \frac{1}{6x^3} + \frac{1}{30x^5}$$

on $(0, \infty)$, (Qi et al., 2005), it is easy to see that

$$\lim_{x \to \infty} \{x^2 [\psi'(x) - \frac{1}{x}]\} = \frac{1}{2}.$$
 (11)

Using the asymptotic formula

$$\ln \Gamma(z) \sim (z - \frac{1}{2}) \ln z - z + \frac{1}{2} \ln(2\pi)$$
$$+ \frac{1}{12z} - \frac{1}{360z^3} + \frac{1}{1260z^5} - \cdots$$

as $z \to \infty$ in $|\arg z| < \pi$, see [Abramowitz & Stegun, 1972], gives

$$\lim_{x \to \infty} \{x^2 \left[\frac{1}{2} \ln(2\pi) - x + (x - \frac{1}{2}) \ln x \right]$$

$$-\ln \Gamma(x) + \frac{1}{12(x+a)} \right] \}$$

$$= \lim_{x \to \infty} \{x^2 \left[\frac{1}{12(x+a)} - \frac{1}{12x} + O(\frac{1}{x^2}) \right] \}$$

$$= -\frac{a}{12}.$$

In virtue of (11) and the above limit, we obtain

$$x^{2} f_{a}(x) = x^{2} \left[\frac{1}{2} \ln(2\pi) - x + (x - \frac{1}{2}) \ln x \right]$$
$$-\ln \Gamma(x) + \frac{1}{12(x+a)}$$
$$+ \frac{x^{2}}{12} \left[\psi'(x+a) - \frac{1}{x+a} \right]$$
$$\to -\frac{a}{12} + \frac{1}{12} \cdot \frac{1}{2}$$

as x tends to ∞ . So the necessary condition for $-f_a(x)$ to be completely monotonic on $(0,\infty)$ is $a \ge \frac{1}{2}$.

If $f_a(x)$ for a > 0 is completely monotonic on $(0, \infty)$, then $f_a(x)$ should be decreasing and positive on $(0, \infty)$, but utilizing (7) leads to

$$\lim_{x \to 0^{+}} f_{a}(x) = \lim_{x \to 0^{+}} \left[\frac{1}{2} \ln(2\pi) - x + (x - \frac{1}{2}) \ln x \right]$$
$$-\ln \Gamma(x) + \frac{1}{12} \psi'(a)$$

$$= \frac{1}{12} \psi'(a) - 2 \lim_{x \to 0^{+}} \int_{0}^{\infty} \frac{\arctan(t/x)}{e^{2\pi t} - 1} dt$$
$$= \frac{1}{12} \psi'(a) - \pi \int_{0}^{\infty} \frac{1}{e^{2\pi t} - 1} dt = -\infty$$

which leads to a contradiction. So the necessary condition for $f_a(x)$ to be completely monotonic on $(0,\infty)$ is a = 0. The first proof of Theorem 2 is complete.

Proof. The second proof. The famous Binet's first formula of $\ln \Gamma(x)$ for x > 0 is given by

$$\ln \Gamma(x) = \left(x - \frac{1}{2}\right) \ln x - x + \ln \sqrt{2\pi} + \theta(x),$$

where

$$\theta(x) = \int_0^\infty \left(\frac{1}{e^t - 1} - \frac{1}{t} + \frac{1}{2}\right) \frac{e^{-xt}}{t} dt$$

for x > 0 is called the remainder of Binet's first formula for the logarithm of the gamma function $\Gamma(x)$. (Magnus *et al.* 1966; Qi & Guo, 2010c). Combining this with the integral representation

$$\psi^{(k)}(x) = (-1)^{k+1} \int_0^\infty \frac{t^k}{1 - e^{-t}} e^{-xt} dt$$

for x > 0 and $k \in \mathbb{N}$, (Abramowitz & Stegun, 1972), yields

$$f_a(x) = \frac{1}{12} \psi'(x+a) - \theta(x)$$

$$= \int_0^\infty \left[\frac{te^{(1-a)t}}{12(e^t - 1)} - \frac{1}{t} \left(\frac{1}{e^t - 1} - \frac{1}{t} + \frac{1}{2} \right) \right] e^{-xt} dt.$$
(12)

It is not difficult to see that the positivity and negativity are equivalent to

$$a \pm -\frac{1}{t} \ln \left[\frac{12(e^t - 1)}{t^2 e^t} \left(\frac{1}{e^t - 1} - \frac{1}{t} + \frac{1}{2} \right) \right] = -\varphi(t),$$

where $\varphi(t)$ is defined by (10). The rest proof is the same as in the first proof of Theorem 2. The second proof of Theorem 2 is complete.

4. Remarks

In this section, we list more results in the form of remarks.

Remark 1. From proofs of Theorem 1 and Theorem 2, we can abstract a general and much useful conclusion below.

Theorem 3 A function f(x) defined on an infinite interval I tending to ∞ is completely monotonic if and only if

1. there exist positive numbers α_i such that the differences $(-1)^i [f(x) - f(x + \alpha_i)]^{(i)}$ are nonnegative

for all integers $i \ge 0$ on I;

2. the limits $\lim_{x\to\infty} [(-1)^i f^{(i)}(x)] = a_i \ge 0$ exist for all integers $i \ge 0$.

This is essentially a generalization of Guo *et al.* (2006); Guo & Qi (2011a); Guo & Qi (2010b); Guo & Qi (2010c); Qi (2007); Qi & Guo (2009) and Qi *et al.* (2010) which was also implicitly applied in Guo *et al.* (2010) and Qi & Guo (2010a), for example.

Remark 2. Because $f_a(x) = \frac{1}{2}\ln(2\pi) - x - F_a(x)$ and $f_{a''}(x) = -F_{a''}(x)$ on $(0,\infty)$, the concavity of $F_0(x)$ and the convexity of $F_a(x)$ for $a \ge \frac{1}{2}$ obtained in Merkle (1998) can be concluded readily from the complete monotonicity of $f_a(x)$ and $-f_\beta(x)$ on $(0,\infty)$ established in Theorems 1 and 2.

Remark 3. We also recall from Atanassov & Tsoukrovski (1988); Qi & Guo (2004); Qi *et al.* (2006); Qi *et al.* (2004) that a function f(x) is said to be logarithmically completely monotonic on an interval I if it has derivatives of all orders on I and its logarithm f(x) satisfies $0 \le (-1)^k [\ln f(x)]^{(k)} < \infty$ for all integers $k \ge 1$ on I. It was proved once again in Berg (2004); Guo & Qi (2010a); Qi & Chen (2004); Qi & Guo (2004); Qi *et al.* (2006) that logarithmically completely monotonic functions on an interval I must be completely monotonic on I, but not conversely. For more information on the history and properties of logarithmically completely monotonic functions, please refer to Atanassov & Tsoukrovski (1988); Berg (2004); Guo & Qi (2010a); Qi (2010); Qi *et al.* (2010) and closely related references therein.

For $a \ge 0$ and x > 0, let

$$g_a(x) = -\ln\Gamma(x) + (x - \frac{1}{2})\ln x - x + \frac{1}{12}\psi'(x+a).$$

It is obvious that

$$f_a(x) = \frac{1}{2}\ln(2\pi) + g_a(x)$$

on $(0,\infty)$ for $a \ge 0$, with the limit (8). It is not difficult to see that Theorem 1 in Alzer (1993) may be reworded as follows: For 0 < s < 1 the function $\exp[g_a(x+s) - g_a(x+1)]$ is logarithmically completely monotonic on $(0,\infty)$ if and only if $a \ge \frac{1}{2}$, and so is the function $\exp[g_a(x+1) - g_a(x+s)]$ if and only if a = 0. This was reviewed in Qi (2010).

In virtue of complete monotonicity of $f_a(x)$ and

Remark 1, it follows that the difference

$$f_a(x+s) - f_a(x+t) = g_a(x+s) - g_a(x+t)$$

for t > s and $a \ge 0$ is completely monotonic with respect to $x \in (-s,\infty)$ if and only if a = 0, and so is its negative if and only if $\alpha \ge \frac{1}{2}$. Therefore, by the second item of Theorem 5 in Qi & Guo (2010b), it follows that the function $\exp[f_a(x+s)-f_a(x+t)]$ for t > s and $a \ge 0$ is logarithmically completely monotonic with respect to x on $(-s,\infty)$ if and only if $a \ge \frac{1}{2}$, and so is the function $\exp[f_a(x+t)-f_a(x+s)]$ if and only if a = 0. In other words, the function

$$\frac{\Gamma(x+s)}{\Gamma(x+t)} \cdot \frac{(x+t)^{x+t-1/2}}{(x+s)^{x+s-1/2}} \exp[s-t] + \frac{\psi'(x+t+\alpha) - \psi'(x+s+\alpha)}{12}$$
(13)

for s < t and $\alpha \ge 0$ is logarithmically completely monotonic with respect to $x \in (-s, \infty)$ if and only if $\alpha \ge \frac{1}{2}$, and so is the reciprocal of (13) if and only if $\alpha = 0$.

The monotonicity of (13) and its reciprocal implies that the double inequality

$$\exp[t - s + \frac{\psi'(x + s + \beta) - \psi'(x + t + \beta)}{12}]$$

$$\leq \frac{\Gamma(x + s)}{\Gamma(x + t)} \cdot \frac{(x + t)^{x + t - 1/2}}{(x + s)^{x + s - 1/2}}$$

$$\psi'(x + s + \alpha) - \psi'(x + t + \alpha)$$

$$\leq \exp[t-s+\frac{\psi'(x+s+\alpha)-\psi'(x+t+\alpha)}{12}]$$

for $\alpha > \beta \ge 0$, s < t and $x \in (-s, \infty)$ is valid if and only if $\beta = 0$ and $\alpha \ge \frac{1}{2}$.

5. Conclusion

In conclusion, from complete monotonicity in Theorem 2, Theorem 1 and Corollary 1 in Alzer (1993) together with Theorem 3 and its corollary in Li *et al.* (2006) may be deduced and extended straightforwardly. This means that Theorem 2 is stronger not only than Alzer (1993) but also than Li *et al.* (2006).

Remark 4. As a consequence of Theorem 2, the following

double inequality is easily obtained: for x > 0, the double inequality

$$\sqrt{2\pi} x^{x-1/2} \exp\left[\frac{\psi'(x+\beta)}{12} - x\right] < \Gamma(x)$$

$$< \sqrt{2\pi} x^{x-1/2} \exp\left[\frac{\psi'(x+\alpha)}{12} - x\right]$$

is valid if and only if $\alpha = 0$ and $\beta \ge \frac{1}{2}$.

For more inequalities for bounding the gamma function $\Gamma(x)$, please refer to Guo & Qi (2010c); Guo *et al.* (2008); Zhao *et al.* (2012a) and closely related references therein.

Remark 5. The equation (12) in the second proof of Theorem 2 tells us the integral representations of the completely monotonic functions $f_0(x)$ and $-f_a(x)$ for $a \ge \frac{1}{2}$.

Remark 6. For the history, background, motivations, and recent developments of this topic, please refer to the survey and expository papers (Qi (2010); Qi (2014); Qi & Luo (2012); Qi & Luo (2013)) and plenty of references therein.

Remark 7. This paper is a revised version of the preprint (Qi, 2013).

6. Acknowledgements

The author appreciates the anonymous referees and the technical editors for their careful corrections to and valuable comments on the original version of this paper.

References

Abramowitz, M. & Stegun, I.A. (Eds) (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series 55, 10th printing, with corrections, Washington.

Alzer, H. (1993). Some gamma function inequalities. Mathematics of Computation, **60**:337–346, doi:10.2307/2153171.

Atanassov, R.D. & Tsoukrovski, U.V. (1988). Some properties of a class of logarithmically completely monotonic functions. Comptes rendus de l'Académie bulgare des Sciences, **41**:21–23.

Berg, C. (2004). Integral representation of some functions related to the gamma function. Mediterranean Journal of Mathematics, 1:433–439, doi:10.1007/s00009-004-0022-6.

Dubourdieu, J. (1939). Sur un théorème de M. S. Bernstein relatifà la transformation de Laplace-Stieltjes. Compositio Mathematica, **7**:96–111. (French)

Guo, B.N., Chen, R.J. & Qi, F. (2006). A class of completely monotonic functions involving the polygamma functions. Journal of Mathematical Analysis and Approximation Theory, 1:124–134.

- **Guo, B.N. & Qi, F. (2010a).** A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function. University Politehnica of Bucharest Scientific Bulletin Series A—Applied Mathematics and Physics, 72:21–30.
- **Guo, B.N. & Qi, F. (2010b).** Some properties of the psi and polygamma functions. Hacettepe Journal of Mathematics and Statistics, **39**:219–231.
- **Guo, B.N. & Qi, F. (2010c).** Two new proofs of the complete monotonicity of a function involving the psi function. Bulletin of the Korean Mathematical Society, **47**:103–111, doi:10.4134/bkms.2010.47.1.103.
- **Guo, B.N. & Qi, F. (2011a).** A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications. Journal of the Korean Mathematical Society, **48**:655–667, doi:10.4134/JKMS.2011.48.3.655.
- **Guo, B.N. & Qi, F. (2011b).** An alternative proof of Elezović-Giordano-Pečarić's theorem. Mathematical Inequalities & Applications, **14**:73–78, doi:10.7153/mia-14-06.
- **Guo, B.N. & Qi, F. (2012a).** A completely monotonic function involving the tri-gamma function and with degree one. Applied Mathematics and Computation, **218**:9890–9897, doi:10.1016/j.amc.2012.03.075.
- **Guo, B.N. & Qi, F. (2012b).** Monotonicity of functions connected with the gamma function and the volume of the unit ball. Integral Transforms and Special Functions, **23**:701–708, doi:10.1080/10652469.2011.6275
- **Guo, B.N. & Qi, F. (2013a).** Monotonicity and logarithmic convexity relating to the volume of the unit ball. Optimization Letters, **7**:1139–1153, doi:10.1007/s11590-012-0488-2.
- **Guo, B.N. & Qi, F. (2013b).** Refinements of lower bounds for polygamma functions. Proceedings of the American Mathematical Society, **141**:1007–1015, doi:10.1090/S0002-9939-2012-11387-5.
- **Guo, B.N., Qi, F. & Srivastava, H.M. (2010).** Some uniqueness results for the non-trivially complete monotonicity of a class of functions involving the polygamma and related functions. Integral Transforms and Special Functions, **21**:849–858, doi:10.1080/10652461003748112.
- **Guo, B.N., Zhang, Y.J. & Qi, F. (2008).** Refinements and sharpenings of some double inequalities for bounding the gamma function. Journal of Inequalities in Pure and Applied Mathematics, **9**:(1)1, Art. 17; http://www.emis.de/journals/JIPAM/article953.html.
- **Guo**, S., Qi, F. & Srivastava, H.M. (2012). A class of logarithmically completely monotonic functions related to the gamma function with applications. Integral Transforms and Special Functions 23:557–566, doi:10.1080/10652469.2011.611331.
- Li, W.H., Qi, F. & Guo, B.N. (2013). On proofs for monotonicity of a function involving the psi and exponential functions. Analysis—International mathematical Journal of Analysis and its Applications, 33:45–50, doi:10.1524/anly.2013.1175.
- Li, A.J., Zhao, W.Z., & Chen, C.P. (2006). Logarithmically complete monotonicity properties for the ratio of gamma function. Advanced Studies in Contemporary Mathematics (Kyungshang), 13:183–191.
- **Lü, Y.P., Sun, T.C. & Y.M. Chu (2011).** Necessary and sufficient conditions for a class of functions and their reciprocals to be logarithmically completely monotonic. Journal of Inequalities and Applications, **2011**:8 pages, doi:10.1186/1029-242X-2011-36.
- Magnus, W., Oberhettinger, F. & Soni R.P. (1966). Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin, doi:10.1137/1009129.

- **Merkle, M. (1998).** Convexity, Schur-convexity and bounds for the gamma function involving the digamma function. Rocky Mountain Journal of Mathematics, **28**:1053–1066, doi:10.1216/rmjm/1181071755.
- Mitrinović, D.S., Pečarić, J.E. & Fink, A.M. (1993). Classical and New Inequalities in Analysis. Kluwer Academic Publishers, doi:10.1007/978-94-017-1043-5.
- **Qi, F. (2007).** A completely monotonic function involving the divided difference of the psi function and an equivalent inequality involving sums. Australian & New Zealand Industrial and Applied Mathematics Journal, **48**:523–532, doi:10.1017/S1446181100003199.
- Qi, F. (2013). A completely monotonic function involving the gamma and tri-gamma functions. arXiv preprint, http://arxiv.org/abs/1307.5407.
- **Qi, F. (2010).** Bounds for the ratio of two gamma functions. Journal of Inequalities and Applications, 2010:Article ID 493058, 84 pages, doi:10.1155/2010/493058.
- **Qi, F. (2014).** Bounds for the ratio of two gamma functions: from Gautschi's and Kershaw's inequalities to complete monotonicity. Turkish Journal of Analysis and Number Theory, **2**:152–164, doi:10.12691/tjant-2-5-1.
- Qi, F. & Berg, C. (2013). Complete monotonicity of a difference between the exponential and trigamma functions and properties related to a modified Bessel function. Mediterranean Journal of Mathematics, 10:1685–1696. doi:10.1007/s00009-013-0272-2.
- Qi, F., Cerone, P. & Dragomir, S.S. (2013a). Complete monotonicity of a function involving the divided difference of psi functions. Bulletin of the Australian Mathematical Society 88:309–319, doi:10.1017/S0004972712001025.
- **Qi, F., Luo, Q.M. & Guo, B.N. (2013b).** Complete monotonicity of a function involving the divided difference of digamma functions. Science China Mathematics, **56**:2315–2325, doi:10.1007/s11425-012-4562-0.
- Qi, F. & Chen, C.P. (2004). A complete monotonicity property of the gamma function. Journal of Mathematical Analysis and Applications, 296:603–607, doi:10.1016/j.jmaa.2004.04.026.
- Qi, F., Cui, R.Q., Chen, C.P. & Guo, B.N. (2005). Some completely monotonic functions involving polygamma functions and an application. Journal of Mathematical Analysis and Applications, 310:303–308, doi:10.1016/j.jmaa.2005.02.016.
- Qi, F. & Guo, B.N. (2004). Complete monotonicities of functions involving the gamma and digamma functions. RGMIA Research Report Collection, 7:Art. 8:63–72, http://rgmia.org/v7n1.php.
- Qi, F. & Guo, B.N. (2009). Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications. Communications on Pure and Applied Analysis, 8:1975–1989, doi:10.3934/cpaa.2009.8.1975.
- Qi, F. & Guo, B.N. (2010a). Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions to be completely monotonic. Advances in Applied Mathematics, 44:71–83, doi:10.1016/j. aam.2009.03.003.
- **Qi, F. & Guo, B.N. (2010b).** Some logarithmically completely monotonic functions related to the gamma function. Journal of the Korean Mathematical Society, **47**:1283–1297, doi:10.4134/JKMS.2010.47.6.1283.
- **Qi, F. & Guo, B.N. (2010c).** Some properties of extended remainder of Binet's first formula for logarithm of gamma function. Mathematica Slovaca, **60**:461–470, doi:10.2478/s12175-010-0025-7.

- Qi, F., Guo, B.N. & Chen, C.P. (2006). Some completely monotonic functions involving the gamma and polygamma functions. Journal of the Australian Mathematical Society, **80**:81–88, doi:10.1017/S1446788700011393.
- Qi, F., Guo, B.N. & Chen, C.P. (2004). Some completely monotonic functions involving the gamma and polygamma functions. RGMIA Research Report Collection, 7:Art. 5:31–36, http://rgmia.org/v7n1.php.
- Qi, F., Guo, S. & Guo, B.N. (2010). Complete monotonicity of some functions involving polygamma functions. Journal of Computational and Applied Mathematics, 233:2149–2160, doi:10.1016/j. cam.2009.09.044.
- Qi, F., Li, W. & Guo, B.N. (2006). Generalizations of a theorem of I. Schur. Applied Mathematics E-Notes, 6:244–250.
- Qi, F. & Luo, Q.M. (2012). Bounds for the ratio of two gamma functions—From Wendel's and related inequalities to logarithmically completely monotonic functions. Banach Journal of Mathematical Analysis, 6:132–158, doi:10.15352/bjma/1342210165.
- **Qi, F. & Luo, Q.M. (2013).** Bounds for the ratio of two gamma functions: from Wendel's asymptotic relation to Elezović-Giordano-Pečarić's theorem. Journal of Inequalities and Applications, 542, 20 pages, doi:10.1186/1029-242X-2013-542.
- Qi, F., Wei, C.F. & Guo, B.N. (2012). Complete monotonicity of a function involving the ratio of gamma functions and applications. Banach Journal of Mathematical Analysis, 6:35–44, doi:10.15352/bjma/1337014663.
- Qi, F., Xu, S.L. & Debnath, L. (1999). A new proof of monotonicity for extended mean values. International Journal of

- Mathematics and Mathematical Sciences, **22**:417–421, doi:10.1155/S0161171299224179.
- Qi, F. & Zhang, S.Q. (1999). Note on monotonicity of generalized weighted mean values. Proceedings of the Royal Society of London Series A—Mathematical, Physical and Engineering Sciences, 455:3259–3260, doi:10.1098/rspa.1999.0449.
- **Srivastava, H.M., Guo, S. & Qi, F. (2012).** Some properties of a class of functions related to completely monotonic functions. Computers & Mathematics with Applications, **64**:1649–1654, doi:10.1016/j. camwa.2012.01.016.
- Widder, D.V. (1946). The Laplace Transform. Princeton University Press, Princeton.
- Zhao, T.H., Chu, Y.M. & Wang, H. (2011). Logarithmically complete monotonicity properties relating to the gamma function. Abstract and Applied Analysis, 2011:Article ID 896483, 13 pages, doi:10.1155/2011/896483.
- Zhao, J.L., Guo, B.N. & Qi, F. (2012a). A refinement of a double inequality for the gamma function. Publ. Math. Debrecen, 80:333–342, doi:10.5486/PMD.2012.5010.
- Zhao, J.L., Guo, B.N. & Qi, F. (2012b). Complete monotonicity of two functions involving the tri- and tetra-gamma functions. Period. Math. Hungar., 65:147–155, doi:10.1007/s10998-012-9562-x.

 Submitted :
 26/01/2015

 Revised :
 26/08/2015

 Accepted :
 17/09/2015

دالة تامة الرتابة متضمنة دوال غاما و تراي غاما

^{1،2،3}فنغ تشى

معهد الرياضيات - جامعة خنان للفنون التطبيقية - جياوتسو مدينة - مقاطعة خنان - 454010 - الصين كلية الرياضيات في جامعة منغوليا الداخلية للقوميات - مدينة تونغلياو - منطقة منغوليا الداخلية ذاتية الحكم - 028043- الصين قسم الرياضيات - كلية العلوم - جامعة تيانجين للفنون التطبيقية - مدينة تيانجين - 300387- الصين البريد الالكتروني: qifeng618@qq.com ,qifeng618@hotmail.com ,qifeng618@gmail.com

خلاصة

نقدم في هذا البحث شروط ضرورية و كافية على الثابت a حتى تكون الدالة

$$\frac{1}{2}\ln(2\pi) - x + (x - \frac{1}{2})\ln x - \ln\Gamma(x) + \frac{1}{12}\psi'(x+a)$$

ويكون سالبها أيضاً تام الرتابة على $(0,\infty)$ حيث أن $0 \ge a$ هو عدد حقيقي، $\Gamma(x)$ هي دالة غاما الكلاسيكية و $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ هي دالة داي غاما. و كتطبيق لما وجدناه، نستخرج بعض النتائج المعروفة، و بعض المتباينات الجديدة.